E17AA--

EMISSION CONTROL

CONTENTS

GENERAL INFORMATION 2
SPECIFICATIONS 2
General Specifications – Vehicles built up to May 1994
General Specifications – Vehicles built from June 1994 4-2
Service Specifications – Vehicles built up to May 1994
Service Specifications – Vehicles built from June 1994 5-1
Torque Specifications – Vehicles built up to May 1994 5-2
Torque Specifications – Vehicles built from June 1994 5-2
Sealants and Adhesive 5-2
SPECIAL TOOL 5-2
TROUBLESHOOTING6

SERVICE ADJUSTMENT PROCEDURES (4G32, 4G33, 4G63 engines) – Vehicles built up to May 1994
SERVICE ADJUSTMENT PROCEDURES (4G92, 4G63 engines) – Vehicles with conventional carburetor built from June 1994
SERVICE ADJUSTMENT PROCEDURES (G63B engine) – Vehicles built up to May 1994
SERVICE ADJUSTMENT PROCEDURES (4G92, 4G63 engines) – Vehicles with FBC built from June 1994
SERVICE ADJUSTMENT PROCEDURES (4G64, G64B engines) – Vehicles built up to May 1994
SERVICE ADJUSTMENT PROCEDURES (4G63, 4G64 engines) – Vehicles with MPI built from June 1994
SERVICE ADJUSTMENT PROCEDURES (4D56 engine)
CATALYTIC CONVERTER 49

GENERAL INFORMATION

The emission control system has the following three major sysems.

- The crankcase emission control system is a system adopting a closed-type crankcase ventilation to prevent blow-by gas from escaping into the atmosphere. The blow-by gas generated in the crankcase is instead led to the combustion chamber for combustion.
- The evaporative emission control system for preventing the emission of fuel vapor from the fuel tank, etc. into the atmosphere consists of various components (a canister, purge control valve, 2-way valve and so on) which collect and lead generated fuel vapor to the combustion chamber for combustion.
- The exhaust emission control system consists of an air-fuel ratio control unit (FBC system and MPI system), three-catalyst converter, exhaust gas recirculation system, secondary air supply system and so on to reduce emission of CO,HC and NOx.

SPECIFICATIONS

GENERAL SPECIFICATIONS – Vehicles built up to May 1994 VEHICLES FOR EUROPE 4G32, 4G63 engines

N	ame	Specification
Crankcase emission control system	Positive crankcase ventilation (PCV) valve	Variable flow type (Purpose: HC reduc- tion)
Evaporative emission control system	Canister	
	• 2-way valve	_
	 Purge control valve (PCV) 	Single diaphragm type
	 Outer vent valve (OVV) 	With temperature control
Exhaust emission control system	Exhaust gas recirculation system	
	 EGR valve 	Single type
	• Thermo-valve	Bimetal type (Purpose: NOx reduction)
	Secondary air supply system	
	Reed valve	With air control valve (Purpose: CO, HC reduction)
	Air intake temperature control system	Vacuum control type (Purpose: CO, HC reduction)

4G64 engines

N	ame	Specification
Crankcase emission control system	Positive crankcase ventilation (PCV) valve	Variable flow type (Purpose: HC reduction)
Evaporative emission control system	Canister	—
	• 2-way valve	_
	 Purge control solenoid valve 	ON-OFF solenoid valve (Purpose: HC reduction)
Exhaust emission control system	Exhaust gas recirculation system	
	EGR valve	Single type
	Thermo-valve	Bimetal type (Purpose: NOx reduction)
	Air-fuel ratio control device-MPI system	Oxygen sensor feedback type (Purpose: CO, HC, NOx reduction)
	Three-way catalytic converter	Monolith type (Purpose: CO, HC, NOx reduction)

E17BAAG

E17CA--

G63B engines

Na	ame	Specification
Crankcase emission control system	Positive crankcase ventilation (PCV) valve	Variable flow type (Purpose: HC reduction)
Evaporative emission control	Canister	_
system	• 2-way valve	-
	 Purge control valve (PCV) 	Single diaphragm type
	 Bowl vent valve (BVV) 	Vacuum type (Purpose: HC reduction)
Exhaust emission control system	Flow-control combustion system	Jet swirl system (Purpose: CO reduction)
	Air-fuel ratio control device-FBC system	Oxygen sensor feedback type (Purpose: CO, HC, NOx reduction)
	Three-way catalytic converter	Monolith type (Purpose: CO, HC, NOx reduc- tion)
	Secondary air supply system	
	Reed valve	With air control valve
	Secondary air control valve	ON-OFF solenoid valve (Purpose: CO, HC reduction)
	Exhaust gas recirculation system	
	EGR valve	Single type
	Vacuum regulator valve (VRV)	With vacuum control
	Thermo valve	Wax type (Purpose: NOx reduction)
	Intake air temperature control system	Vacuum control type (Purpose: CO, HC reduction)
	Mixture control valve (MCV)	Pressure differential type valve (Purpose: CO, HC reduction)

G64B engines

Na	ame	Specification
Crankcase emission control system	Positive crankcase ventilation (PCV) valve	Variable flow type (Purpose: HC reduction)
Evaporative emission control	Canister	-
system	• 2-way valve	
	Purge control solenoid valve	ON-OFF solenoid valve (Purpose: HC reduction)
Exhaust emission control system	Flow-control combustion system	Jet swirl system (Purpose: CO reduction)
	Air-fuel ratio control device-MPI system	Oxygen sensor feedback type (Purpose: CO, HC, NOx reduction)
	Three-way catalytic converter	Monolith type (Purpose: CO, HC, NOx reduction)
	Exhaust gas recirculation system	
	EGR valve	Single type
	Thermo valve	Bimetal type (Purpose: NOx reduction)

4D56 engines (Vehicles with turbocharger for Switzerland built from November, 1990)

Name		Specification
Exhaust emission control system	Exhaust gas recirculation system	
	EGR valve	Single type
	EGR control solenoid valve	ON-OFF and Duty solenoid valve

VEHICLES FOR GENERAL EXPORT

Na	ame	Specification
Crankcase emission control system	Positive crankcase ventilation (PCV) valve	Variable flow type (Purpose: HC reduction)
Evaporative emission control	Canister	-
system	• 2-way valve	-
	Purge control valve	Single diaphragm type

VEHICLES FOR HONG KONG BUILT FROM JULY 1991

4G33 engines

Na	ime	Specification
Crankcase emission control system	Positive crankcase ventilation (PCV) valve	Variable flow type (Purpose: HC reduction)
Evaporative emission control system	• Canister	_
	• 2-way valve	_
	 Purge control vavle (PCV) 	Single diaphragm type
	 Outer vent valve (OW) 	With temperature control
Exhaust emission control system	Exhaust gas recirculation system	
	 EGR valve 	Single type
	 Thermo-valve 	Wax type
	 Vacuum regulator valve (VRV) with vacuum control 	(Purpose: NOx reduction)
	Secondary air supply system	
	Reed valve	With air control valve (Purpose: CO, HC reduction)
	Air intake temperature control system	Vacuum control type (Purpose: CO, HC reduction)

4G64 engines

N	ame	Specification
Crankcase emission control system	Positve crankcase ventilation (PCV) valve	Variable flow type (Purpose: HC reduction)
Evaporative emission control system	• Canister	
	• 2-way valve	-
Exhaust emission control system	Air-fuel ratio control device-MPI system	Oxygen sensor feedback type (Purpose: CO, HC, NOx reduction)
	Three-way catalytic converter	Monolity type (Purpose: CO, HC, NOx reduction)

VEHICLES FOR GULF COUNTRIES

Na	ame	Specification
Crankcase emission control system	Positive crankcase ventilation (PCV) valve	Variable flow type (Purpose: HC reduction)
Evaporative emission control	Canister	-
system	• 2-way valve	-
	Purge control valve	Single diaphragm type
Exhaust emission control	Exhaust gas recirculation system	
system	EGR valve	Single type
	Thermo valve	 Bimetal type (Purpose: HC reduction)

VEHICLES FOR AUSTRALIA 4G63 engines

Na	ime	Specification
Crankcase emission control system	Positive crankcase ventilation (PCV) valve	Variable flow type (Purpose: HC reduction)
Evaporative emission control	Canister	
system	 2-way valve 	-
	 Purge control valve (PCV) 	Single diaphragm type
	 Bowl vent valve (BVV) 	Vacuum type
Exhaust emission control	Exhaust gas recirculation system	
system	EGR valve	Single type
	Thermo valve	• Wax type
	Vacuum regulator valve (VRV)	 With vacuum control (Purpose: NOx reduction)
	Secondary air supply system	
	Reed valve	With air control valve (Purpose: CO, HC reduction)
	Intake air temperature control system	Vacuum control type (Purpose: CO, HC reduction)

4G64 engines

	Name	Specification
Crankcase emission control system	Positive crankcase ventilation (PCV) valve	Variable flow type (Purpose: HC reduction)
Evaporative emission control system	 Canister 2-way valve Purge control solenoid valve 	– – ON-OFF solenoid valve (Purpose: HC reduction)
Exhaust emission control system	Air-fuel ratio control device-MPI system	Oxygen sensor feedback type (Purpose: CO, HC, NOx reduction)
	Three-way catalytic converter	Monolith type (Purpose: CO, HC, NOx reduction)

GENERAL SPECIFICATIONS – Vehicles built from June 1994 VEHICLES FOR EUROPE

4G63 - Conventional Carburetor

Name		Specification	
Crankcase emission control system	Positive crankcase ventilation (PCV) valve	Variable flow type (Purpose: HC reduction)	
Evaporative emission	Canister		
control system	• 2-way valve	-	
	 Bowl vent valve (BVV) 	Vacuum type	

4G63 - FBC

	Name	Specification
Crankcase emission control system	Positive crankcase ventilation (PCV) valve	Variable flow type (Purpose: HC reduction)
Evaporative emission control system	 Canister 2-way valve Purge control solenoid valve Bowl vent valve (BVV) 	– – Single diaphragm type Vacuum type (Purpose: HC reduction)
Exhaust emission control system	Air-fuel ratio control device-FBC system	Oxygen sensor feedback type (Purpose: CO, HC, NOx reduction)
	Three-way catalytic converter	Monolith type (Purpose: CO, HC, NOx reduction)
	Secondary air supply system Reed valve Secondary air control valve	With air control valve ON-OFF solenoid valve (Purpose: CO, HC reduction)
	Exhaust gas recirculation system EGR valve Vacuum regulator valve (VRV) Thermo valve	Single type With vacuum control Wax type (Purpose: NOx reduction)
	Intake air temperature control system	Vacuum control type (Purpose: CO, HC reduction)

4G63 – MPI

Name		Specification	
Crankcase emission control system	Positive crankcase ventilation (PCV) valve	Variable flow type (Purpose: HC reduction)	
Evaporative emission	Canister	-	
control system	 2-way valve 	-	
	 Purge control solenoid valve 	ON-OFF solenoid valve (Purpose: HC reduction)	
Exhaust emission control system	Air-fuel ratio control device-MPI system	Oxygen sensor feedback type (Purpose: CO, HC, NOx reduction)	
	Three-way catalytic converter	Monolith type (Purpose: CO, HC, NOx reduction)	
	Exhaust gas recirculation system		
	EGR valve	Single type	
	EGR control solenoid valve	Duty cycle solenoid valve (Purpose: NOx reduction)	

EMISSION CONTROL – Specifications

4D56

Name		Specification
Exhaust emission control system	Exhaust gas recirculation system EGR valve EGR control solenoid valve	Single type ON-OFF and Duty Solenoid valve

VEHICLES FOR GENERAL EXPORT

4G92 - Conventional Carburetor

Name		Specification	
Crankcase emission control system	Positive crankcase ventilation (PCV) valve	Variable flow type (Purpose: HC reduction)	
Evaporative emission control system	 Canister 2-way valve Bowl vent valve (BVV) 	- - Vacuum type	

4G63 – Conventional Carburetor

	Name	Specification
Crankcase emission control system	Positive crankcase ventilation (PCV) valve	Variable flow type (Purpose: HC reduction)
Evaporative emission control system	 Canister 2-way valve Bowl vent valve (BVV) 	– Vacuum type
Exhaust emission control system	Exhaust gas recirculation system*1 EGR valve Thermo valve	 Single type Bimetal type (Purpose: HC reduction)
	High altitude compensation (HAC) system ^{*2} High altitude compensator (HAC)	Bellows type (Purpose: CO, HC reduction)

NOTE

*1: Vehicles for Gulf countries
*2: Vehicles for Columbia, Bolivia and Ecuador

4G92 - FBC

	Name	Specification
Crankcase emission control system	Positive crankcase ventilation (PCV) valve	Variable flow type (Purpose: HC reduction)
Evaporative emission	Canister	_
control system	 2-way valve 	-
	 Bowl vent valve (BVV) 	Vacuum type
		(Purpose: HC reduction)
Exhaust emission control system	Air-fuel ratio control device-FBC system	Oxygen sensor feedback type
	4	(Purpose: CO, HC, NOx reduction)
	Three-way catalytic converter	Monolith type
		(Purpose: CO, HC, NOx reduction)
	Exhaust gas recirculation system	
	EGR valve	Single type
	Thermo valve	Wax type
		(Purpose: NOx reduction)
	Intake air temperature control system	Vacuum control valve
		(Purpose: CO, HC reduction)

4G63 – MPI

and the second data and the second data

Name		Specification	
Crankcase emission control system	Positive crankcase ventilation (PCV) valve	Variable flow type (Purpose: HC reduction)	
Evaporative emission control system	 Canister 2-way valve Purge control solenoid valve 	– – ON-OFF solenoid valve (Purpose: HC reduction)	
Exhaust emission control system	Air-fuel ratio control device-MPI system	Oxygen sensor feedback type (Purpose: CO, HC, NOx reduction)	
	Three-way catalytic converter	Monolith type (Purpose: CO, HC, NOx reduction)	
	Exhaust gas recirculation system EGR valve EGR control solenoid valve	Single type Duty cycle solenoid valve (Purpose: NOx reduction)	

VEHICLES FOR AUSTRALIA 4G63 – Conventional Carburetor

	Name	Specification
Crankcase emission control system	Positive crankcase ventilation (PCV) valve	Variable flow type (Purpose: HC reduction)
Evaporative emission control system	 Canister 2-way valve Bowl vent valve (BVV) 	- Vacuum type
Exhaust emission control system	Exhaust gas recirculation system EGR valve Thermo valve Vacuum regulator valve (VRV)	 Single type Wax type With vacuum control (Purpose: NOx reduction)
	Secondary air supply system Reed valve	With air control valve (Purpose: CO, HC reduction)
	Fuel cut-off device (during deceleration) Fuel cut solenoid valve Vacuum switch Engine speed sensor	ON-OFF solenoid valve Contact type switch Transistor relay (Purpose: CO, HC reduction)
	Three-way catalytic converter	Monolith type (Purpose: CO, HC, NOx reduction)
	Intake air temperature control system	Vacuum control type (Purpose: CO, HC reduction)

4G64 – MPI

	Name	Specification
Crankcase emission control system	Positive crankcase ventilation (PCV) valve	Variable flow type (Purpose: HC reduction)
Evaporative emission control system	Canister2-way valve	-
Exhaust emission control system	Air-fuel ratio control device-MPI system	Oxygen sensor feedback type (Purpose: CO, HC, NOx reduction)
	Three-way catalytic converter	Monolith type (Purpose: CO, HC, NOx reduction)

17-4-5

17-4-6

NOTES

SERVICE SPECIFICATIONS – Vehicles built up to May 1994

E1	7CB	-	-

17-5

Items		Specifications
Standard value		
4G32, 4G33, 4G63 engines		
EGR valve opening pressure mmHg (in.Hg)		
Vehicles to Europe and General Export		60 (2.36)
Vehicles for Australia		70 (2.76)
Purge control valve opening pressure mmHg (in.Hg)		35 (1.38)
Thermo valve opening temperature	1	
Vehicles for Europe and General Export		70°C (158°F)
Vehicles for Australia	1	50°C (122°F)
G63B engines		
EGR valve opening pressure mmHg (in.Hg)		70 (2.76)
Purge control valve opening pressure mmHg (in.Hg)		200 (7.87)
Thermo valve opening temperature		65°C (149°F)
Secondary air control solenoid valve coil resistance [at 20°C (68°F)] Ω		38-44
4G64, G64B engine		
Purge control solenoid valve coil resistance [at 20°C (68°F)] Ω		38-44
Thermo valve opening temperature		40°C (104°F)
4D56 engine (Vehicles with turbocharger for Switzerland built from Nover 1990)	nber,	
EGR control solenoid valve No. 1 and No. 2 resistance [at 20°C (68°F)]	Ω	36 - 44
Lever posistion sensor output voltage Idle position		0.3 - 1.5
Full open		3.7 - 4.9
Speed sensor resistance	Ω	1.3 - 1.9
Engine coolant temperature sensor resistance [at 20°C (68°F)]	kΩ	3.3
[at 80°C (176°F)]	kΩ	0.3

SERVICE SPECIFICATIONS – Vehicles built from June 1994

ltems		Specifications
Standard value		
4G92, 4G63 engines (Conventional carburetor)		
EGR valve opening pressure	mmHg (in.Hg)	
Vehicles for Gulf countries		60 (2.36)
Vehicles for Australia	1	70 (2.76)
Thermo valve opening temperature	°C (°F)	
Vehicles for Gulf countries		70 (158)
Vehicles for Australia		
EGR valve control		70 (158)
Secondary air control	1	18 (65.4)
4G92, 4G63 engines (FBC)		,
EGR valve opening pressure	mmHg (in.Hg)	
4G92 engine		60 (2.36)
4G63 engine		70 (2.76)
Purge control valve opening pressure	mmHg (in.Hg)	35 (1.38)
Thermo valve opening temperature	°C (°F)	
4G92 engine		70 (158)
4G63 engine	1	65 (149)
Secondary air control solenoid valve coil resistance [at 20°C (68°F)]	Ω	38 – 44
4G63, 4G64 engines (MPI)		
EGR valve opening pressure	mmHg (in.Hg)	60 (2.36)
EGR control solenoid valve coil resistance [at 20°C (68°F)]	Ω	36-44
Purge control solenoid valve coil resistance [at 20°C (68°F)]	Ω	36 - 44
4D56		
EGR control solenoid valve No. 1 coil resistance [at 20°C (68°F)]	Ω	36 - 44
EGR control solenoid valve No. 2 coil resistance [at 20°C (68°F)]	Ω	36 - 44
Lever position sensor output voltage	V	
Idle position	1	0.3 - 1.5
Full open		3.7 – 4.9
Speed sensor resistance	kΩ	1.3 - 1.9
Engine coolant temperature sensor resistance	kΩ	
At 20°C (68°F)		3.3
At 80°C (176°F)	ŝ	0.3

TORQUE SPECIFICATIONS – Vehicles built up to May 1994

E17CC--

Items	Nm	kgm	ft.lbs.
Thermo valve	20-40	2.0-4.0	15-29
EGR valve	19-28	1.9-2.8	14-20
Front exhaust pipe to catalytic converter	;		
Type A	50-70	5.0-7.0	36-50
Туре В	30-40	3.0-4.0	22-29
Catalytic converter to main muffler			
Туре А	30-40	3.0-4.0	22-29
Туре В	50-70	5.0-7.0	36-50

TORQUE SPECIFICATIONS – Vehicles built from June 1994

Items	Nm	kgm	ft.lbs.
Thermo valve	1	···········	
Single nipple type	20-50	2.0-5.0	15-36
Except single nipple type	20-40	2.0-4.0	15-29
EGR valve	17-26	1.7-2.6	12-19
Front exhaust pipe to catalytic converter			
Туре А	50-70	5.0-7.0	36-50
Туре В	30-40	3.0-4.0	22-29
Catalytic converter to main muffler			
Type A	30-40	3.0-4.0	22-29
Туре В	50-70	5.0-7.0	36-50

SEALANTS AND ADHESIVE

 Item
 Spescified sealant and adhesive
 Quantity

 Thermo valve thread
 3M NUT LOCKING Part No. 4171 or equivalent
 As required

SPECIAL TOOL

E17DA---

E17CE--

ΓοοΙ	Number	Name	Use
	MD998478	Test harness	Lever position sensor inspection
a di			
	4		

TROUBLESHOOTING

E17EAAA

4G32, 4G33, 4G63, 4G92 ENGINES (Conventional Carburetor)

Symptom	Probable cause	Remedy	Reference page
Engine will not start or start to hard (Cranks OK.)	EGR valve not closed	Repair or replace	17–19, 17–22–8
	Vacuum hose disconnected or damaged	Repair or replace	_
Rough idle or engine stalls	Faulty purge control system	Inspect the system and, if found to be faulty, inspect the component parts	17-14
	EGR valve not closed	Repair or replace	17–19, 17–22–8
	Vacuum hose disconnected or damaged	Repair or replace	_
	Faulty PCV valve	Replace	-
	Faulty intake air temperature control system (carburetor icing)	Inspect the system and, if found to be faulty, inspect the component parts.	17-21, 17-22-10
Engine hesitates or poor acceleration	Faulty exhaust gas recirculation system	Inspect the system and, if found to be faulty, inspect the component parts.	17 -1 7, 17-22-7
	Faulty thermo valve-cold engine	Replace	17-20, 17-22-9
	Faulty intake air temperature control system	Inspect the system and, if found to be faulty, inspect the component parts	17-21, 17-22-10
Excessive oil consumption	Positive crankcase ventilation line clogged	Check positive crankcase ventilation system	17 –13 , 17–22–7
Poor fuel mileage	Faulty exhaust gas recirculation system	Inspect the system and, if found to be faulty, inspect the component parts	17–17, 17–22–7
	Faulty intake air temperature control system	Inspect the system and, if found to be faulty, inspect the component parts	17-21, 17-22-10

G63B, 4G63, 4G92 ENGINES (FBC)

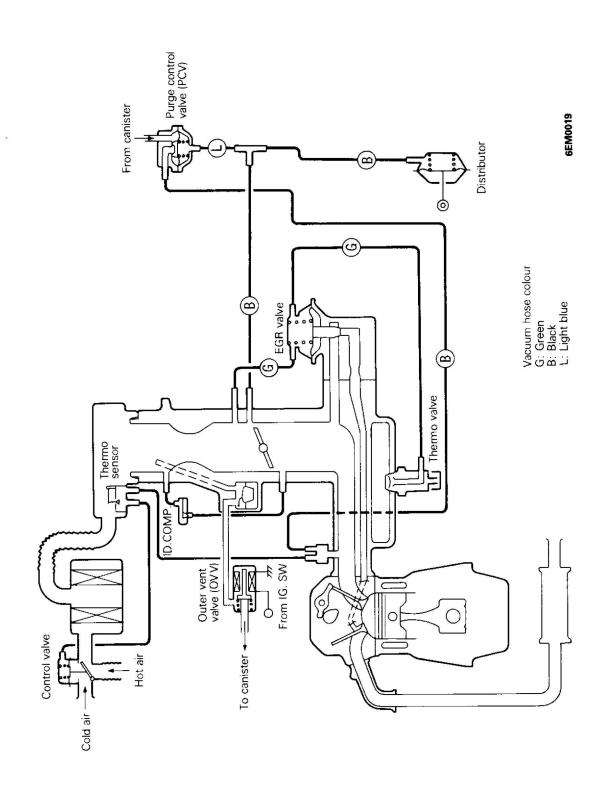
Symptom	Probable cause	Remedy	Reference page
Engine will not start or start to hard (Cranks OK.)	EGR valve not closed	Repair or replace	17-34, 13-35-10
	Mixture control valve not closed	Replace	-
	Vacuum hose disconnected or damaged	Repair or replace	-
Rough idle or engine stalls	Vacuum hose disconnected or damaged	Repair or replace	-
	EGR valve not closed	Repair or replace	17-34, 13-35-10
	Faulty purge control system	Inspect the system and, if found to be faulty, inspect the component parts	17-28, 17-35-8
	Faulty bowl vent valve	Replace	17–30, 17–35–8
	Mixture control valve not closed	Replace	
	Faulty PCV valve	Replace	17-29, 17-35-8
Engine hesitates or poor- acceleration	Faulty exhaust gas recirculation system	Inspect the system and, if found to be faulty, inspect the component parts	17-33, 17-35-10
	Faulty thermo valve-cold engine	Replace	17-29, 17-35-11
	Faulty intake air temperature control system	Inspect the system and, if found to be faulty, inspect the component parts	17–35, 17–35–11

EMISSION CONTROL – Troubleshooting

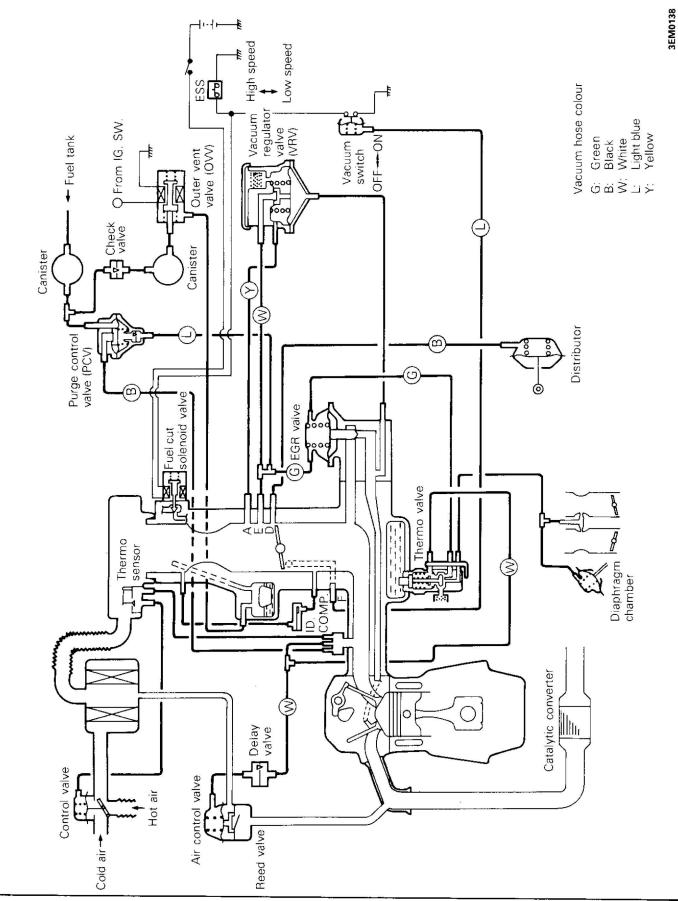
Symptom	Probable cause	Remedy	Reference page
Excessive oil consump- tion	Positive crankcase ventilation line clogged	Check positive crankcase ventilation system	17–28, 17–35 – 8
Poor fuel mileage	Faulty intake air temperature control system	Inspect the system and, if found to be faulty, inspect the component parts	17–35, 17–35–11
	Faulty exhaust gas recirculation sys- tem	Inspect the system and, if found to be faulty, inspect the component parts	17–33, 17–35 – 10

4G63, 4G64, G64B ENGINES (MPI)

Symptom	Probable cause	Remedy	Reference page
Engine will not start or start to hard	EGR valve not closed	Repair or replace	17-48, 17-48 - 9
	Vacuum hose disconnected or damaged	Repair or replace	_
	Faulty purge control solenoid valve	Repair or replace	17-45, 17-48-6
Rough idle of engine stalls	Vacuum hose disconnected or damaged	Repair or replace	_
	EGR valve not closed	Repair or replace	17-48, 17-48 - 9
	Faulty PCV valve	Replace	_
	Faulty purge control system	Inspect the system and, if found to be faulty, inspect the component parts	17–44, 17–48 – 5
Engine hesitates or poor acceleration	Faulty exhaust gas recirculation system	Inspect the system and, if found to be faulty, inspect the component parts	17–47, 17–48–8
Excessive oil consump- tion	Positive crankcase ventilation line clogged	Check positive crankcase ventilation system	17–43, 17–48–5
Poor fuel mileage	Faulty exhaust gas recirculation system	Inspect the system and, if found to be faulty, inspect the component parts	17–47, 17–48 – 8

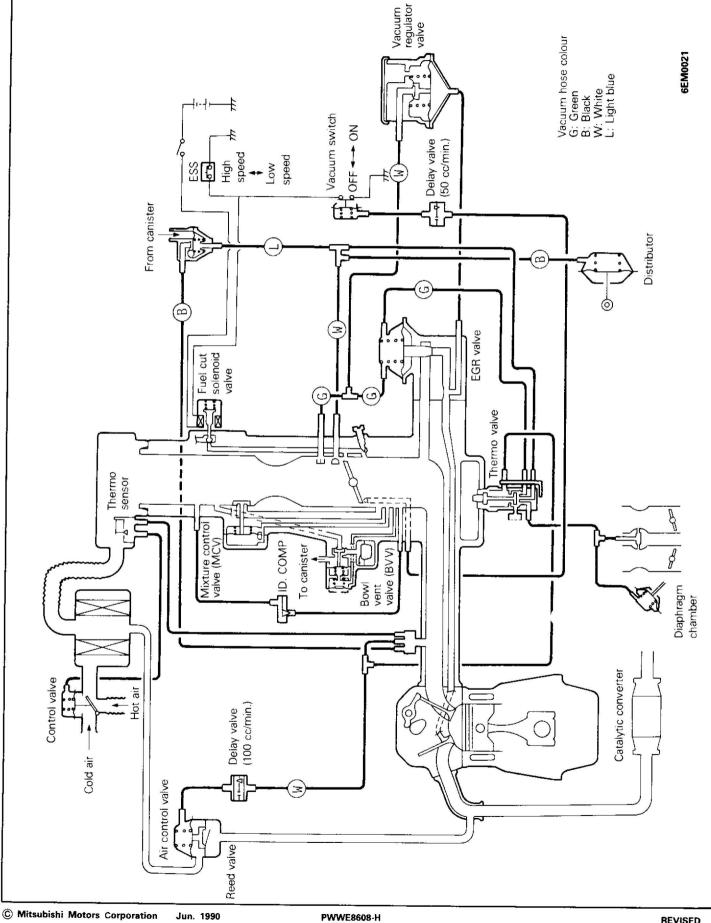

SERVICE ADJUSTMENT PROCEDURES (4G32, 4G33, 4G63 engines) – Vehicles built up to May 1994

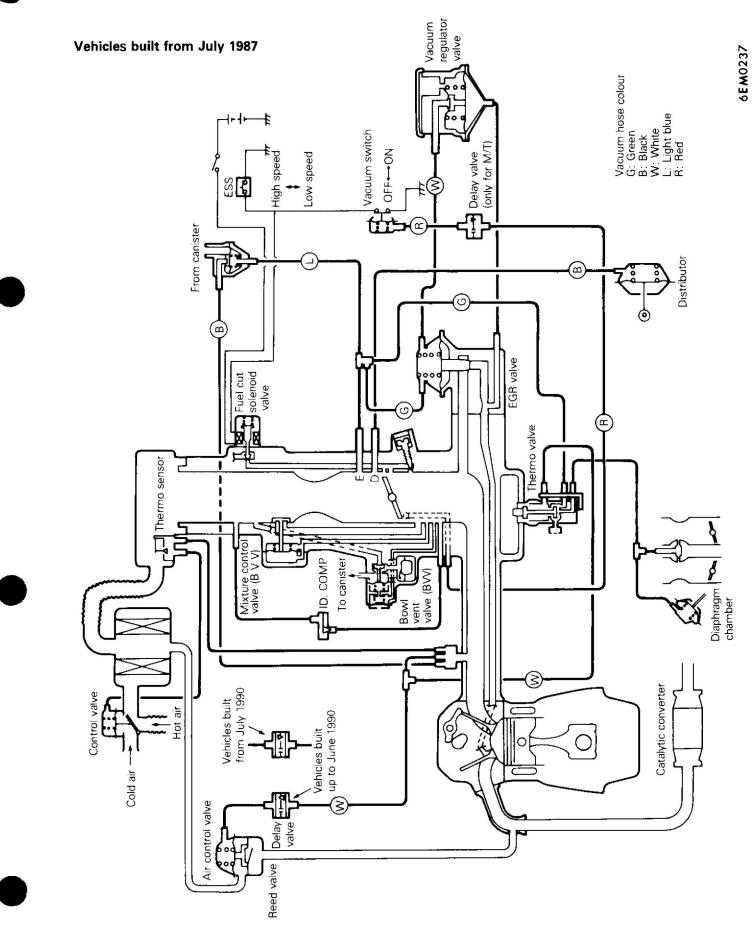
VACUUM HOSE PIPING DIAGRAM


Vehicles for Europe

Vehicles for General Export and Gulf Countries

Vehicles for Hong Kong built from July 1991

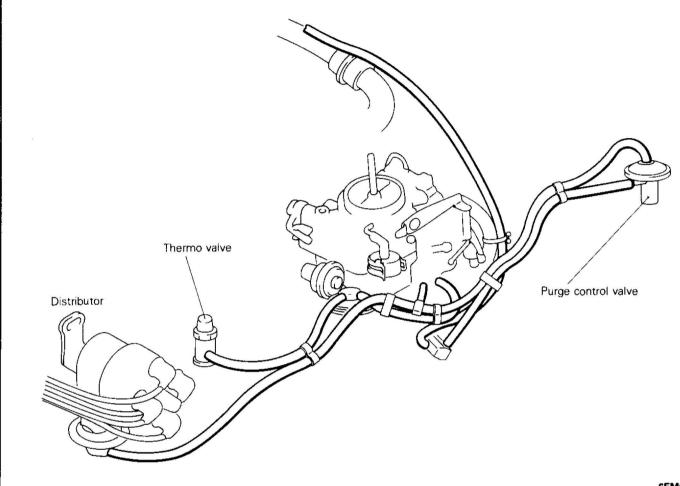



EMISSION CONTROL - Service Adjustment Procedures (4G32, 4G33, 4G63 engines) 17-9-2

NOTE

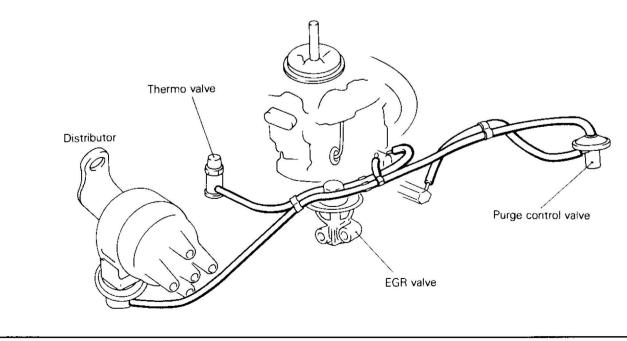
Vehicles for Australia

Vehicles built up to June 1987

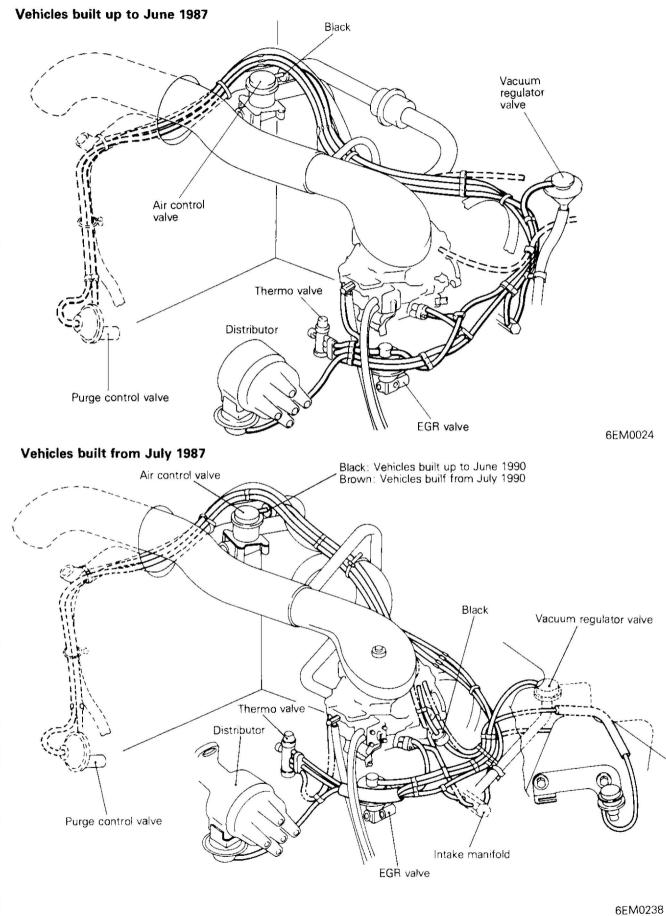

17-10-2

NOTES

10人の「日本市」というまた。10人の「日本市」の「日本市」の「日本市」という」という」

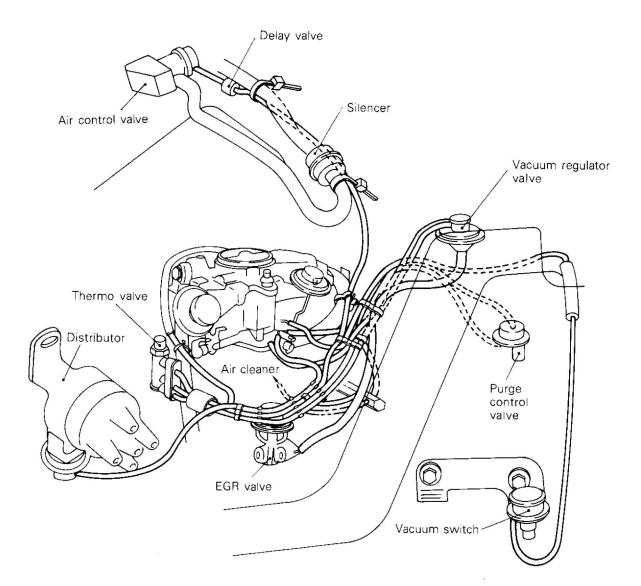

VACUUM HOSE LAYOUT

Vehicles for Europe



6EM0023

Vehicles for General Export and Gulf Countries

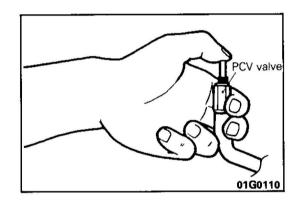


Vehicles for Australia

REVISED

Vehicles for Hong Kong built from July 1991

3EM0126

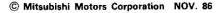

NOTE

and the second second

CAUTIONS ON INSPECTION

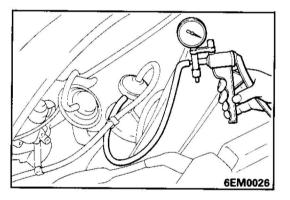
E17FFAA0

- 1. Inspect the various devices only after completing engine adjustment.
- 2. Inspect the hoses to make sure there are no disconnections, connection errors or damage.
- 3. Make sure there is no hose, pipe or port clogging, or cracks or damage in the hoses and pipes.
- 4. When replacing device hoses, always mount the replacement hose in the same position (direction) as the original.
- 5. When finished, check the connections as described in the service manual.


CRANKCASE EMISSION CONTROL SYSTEM E17FAABO

- 1. CHECKING OF PCV VALVE
 - (1) After disconnecting the ventilation hose from the positive crankcase ventilation (PCV) valve, remove the PCV valve from the rocker cover and again connect the ventilation hose.
 - (2) Run the engine at idling speed, place a finger over the end of the PCV valve opening and check the intake manifold vacuum.

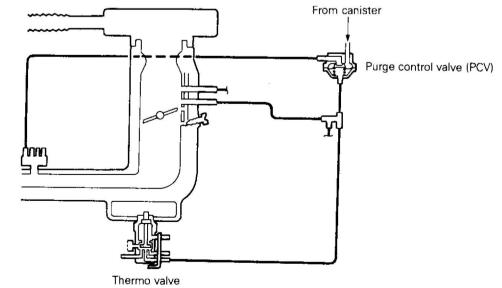
NOTE


The plunger inside the PCV valve will move back and forth.

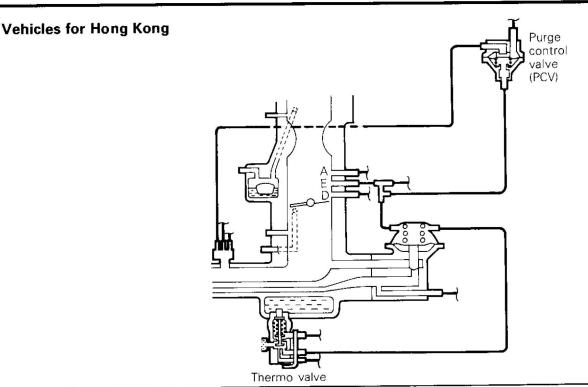
(3) If vacuum cannot be felt against the finger, clean the PCV valve and ventilation hose with cleaning solvent, or else replace.

EVAPORATIVE EMISSION CONTROL SYSTEM

- 1. CHECKING OF PURGE CONTROL SYSTEM (Vehicle for Europe and General Export)
- E17FBAC
- From canister Purge control valve (PCV)



- 6EM0025
- Disconnect the black vacuum hose from the intake manifold nipple and plug the nipple; then connect the disconnected black vacuum hose to a hand vacuum pump.
 Apply vacuum to check the airtightness.


Engine status	Normal condition
Idling	Vacuum is maintained
2,500 r/min.	Vacuum leaks

2. CHECKING OF PURGE CONTROL SYSTEM (Vehicles for Australia and vehicles for Hong Kong built from July 1991)

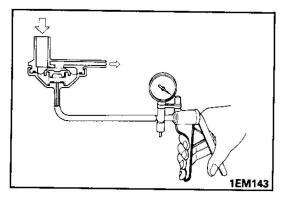
Vehicles for Australia

3EM0139

6EM0028

- (1) Disconnect the black vacuum hose from the intake manifold nipple and plug the nipple; then connect the disconnected black vacuum hose to a hand vacuum pump.
- (2) Inspect the following items with the engine cold [coolant temperature: 40°C (104°F) or less] and hot [coolant temperature: 80°C (176°F) or higher].

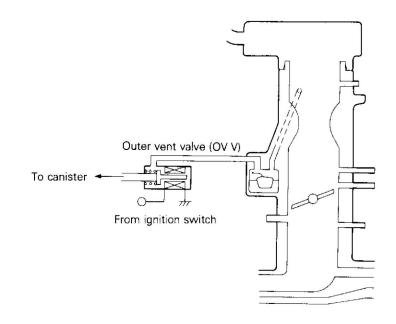
When engine is cold


Vacuum	Engine status	Normal condition
400 mmHg (15.7 in.Hg)	3,500 r/min	Vacuum is maintained

When engine is hot

Vacuum	Engine status	Normal condition
400 mmHg (15.7 in.Hg)	Idling	Vacuum is maintained
400 mmHg (15.7 in.Hg)	3,500 r/min	Vacuum leaks

17-16



3. CHECKING OF PURGE CONTROL VALVE (PCV)

- (1) Remove the purge control valve.
- (2) Connect a hand vacuum pump to the nipple of the PCV.
- (3) Apply a vacuum of 400 mmHg (15.7 in.Hg) and make sure that airtightness is maintained.
- (4) check whether or not air is lightly blown out from the nipple on the canister side.

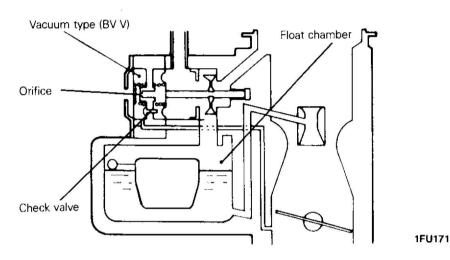
Hand vacuum pump vacuum	Normal condition
0 mmHg (0 in.Hg) (no vacuum)	Air is not blow out
200 mmHg (7.9 in.Hg)	Air is blown out

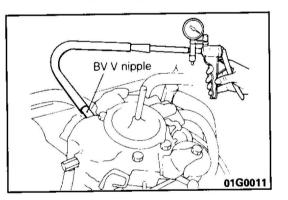
4. CHECKING OF OUTER VENT VALVE (Vehicles for Europe and General Export)

6EM0029

Caution

Use caution when the engine is hot because fuel may be discharged from the hose.

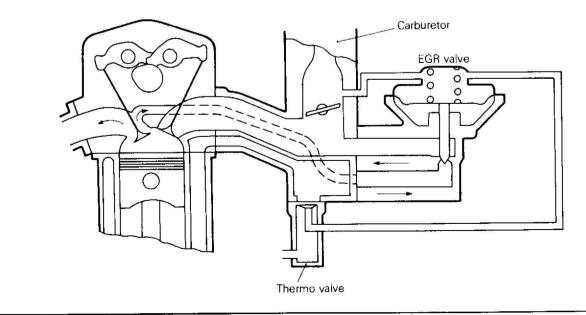

- (1) Disconnect the 2 vapor hoses from the outer vent valve (OVV) and connect them to a vacuum pump.
- (2) Apply a vacuum and check the passage of air through the OVV.


IG.S/W	35°C (95°F) or less	70°C (158°F) or higher
OFF	Vacuum is maintained	Vacuum leaks
ON	Vacuum is maintained	Vacuum is maintained

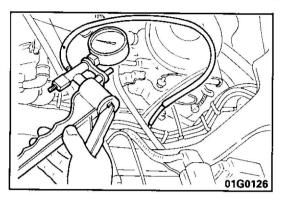
5. CHECKING OF BOWL VENT VALVE (BVV) (Vehicles for Australia)

Caution

Inspesct after the engine has scooled. Fuel may be discharged from the BVV nipple if the engine is still warm.


- (1) Remove the air horn.
- (2) Disconnect the bowl vapor hose from the bowl vent valve (BVV) nipple and connect a hand vacuum pump to the BVV nipple.
- (3) Apply a vacuum of 100 mmHg (3.9 in.Hg) to the BVV and inspect.

Engine status	Normal condition
STOP	Vacuum leaks
Idling	Vacuum is applied

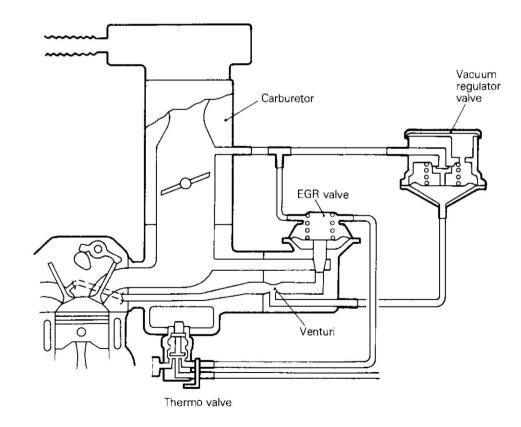

EXHAUST EMISSION CONTROL SYSTEM

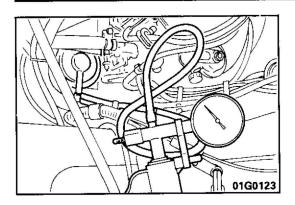
1. CHECKING OF EGR SYSTEM (Vehicles for Europe and Gulf Countries)

E17FCAE

17-18

- (1) Disconnect the vacuum hose (green stripes) from the carburetor throttle body and connect the vacuum hose to a hand vacuum pump.
- (2) Inspect the following items with the engine cold [coolant temperature: 40°C (104°F) or less] and hot [coolant temperature: 80°C (176°F) or higher].


When engine is cold


Vacuum	Engine status	Normal condition
Try applying a vacuum	Idling	Vacuum leaks from the thermo valve

When engine is hot

Vacuum	Engine status	Normal Condition
40 mmHg (1.57 in.Hg) or less	fdling	Vacuum is maintained
150 mmHg (5.91 in.Hg) or more	ldling → somewhat unstable	Vacuum is maintained

2. CHECKING OF EGR SYSTEM (Vehicles for Australia and vehicles for Hong Kong built from July 1991)

- (1) Disconnect the vacuum hose (green stripes) from the carburetor throttle body and connect the vacuum hose to a hand vacuum pump.
- (2) Inspect the following items with the engine cold and hot.

Engine cold [coolant temperature: 40°C (104°F) or less]

Raise engine revolution to 3,500 r/min, apply vacuum	Vacuum leaks to atmosphere from thermo valve
--	--

Engine hot

[coolant temperature 80°C (176°F) or more]

	Engine	Normal condition
Apply	Idling	Vacuum leaks
vacuum	3,500 r/min.	Vacuum is maintained at approx. 80 mmHg (3.1 in.Hg)

3. CHECKING OF EGR VALVE (excluding Vehicles for General Export)

- (1) Remove the EGR valve and inspect for sticking, carbon deposites, etc. If found, clean with a suitable solvent so that the valve seats correctly.
- (2) Connect a hand vacuum pump to the EGR valve.
- (3) Plug the other nipple.

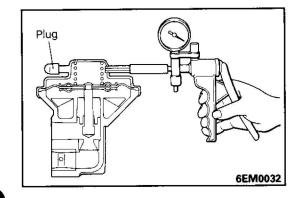
sage.

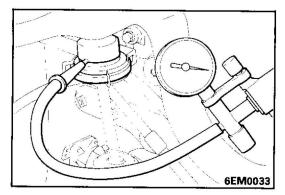
 (4) Apply a vacuum of 500 mmHg (19.7 in.Hg) and make sure that airtightness is maintained.
 Check whether or not air is blown out of the EGR air pas-

Vehicles for Europe (except P03W, P23V, P23W), Gulf Countries and Australia (With a manual transmission)

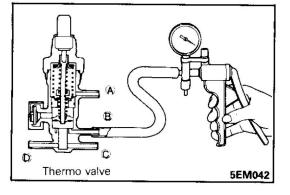
Vacuum	Normal condition
40 mmHg (1.57 in.Hg) or less	Air is not blown out
150 mmHg (5.91 in.Hg) or more	Air is blown out

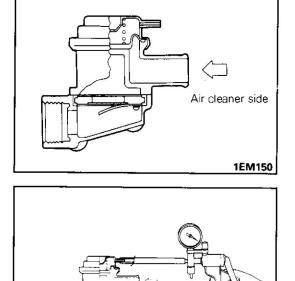
Vehicles for Europe (P03W, P23V, P23W)


Vacuum	Normal condition
30 mmHg (1.18 in.Hg) or less	Air is not blown out
130 mmHg (5.12 in.Hg) or more	Air is blown out


Vehicles for Australia (With an automatic transmision) and vehicles for Hong Kong built from July 1991

Vacuum	Normal condition
40 mmHg (1.57 in.Hg) or less	Air is not blown out
220 mmHg (8.66 in.Hg) or more	Air is blown out


Caution


When mounting the EGR valve, use a new gasket and tighten to a torque of 19–28 Nm (1.9–2.8 kgm, 14–20 ft.lbs.)

17-20

1EM148 © Mitsubishi Motors Corporation July 1991

Exhaust anifold side

Air cleaner side

P

PWWE8608-J

4. CHECKING OF VACUUM REGULATOR VALVE (VRV) (Vehicles for Australia and vehicles for Hong Kong built from July 1991)

- (1) Disconnect the vacuum hose (white stripes) from the vacuum regulator valve (VRV) and connect the hand vacuum pump to the VRV.
- (2) Apply a vacuum of 400 mmHg (15.7 in.Hg) to the VRV and inspect.

Engine status	Normal condition
Stop	Vacuum leaks
3,500 r/min.	Vacuum is maintained

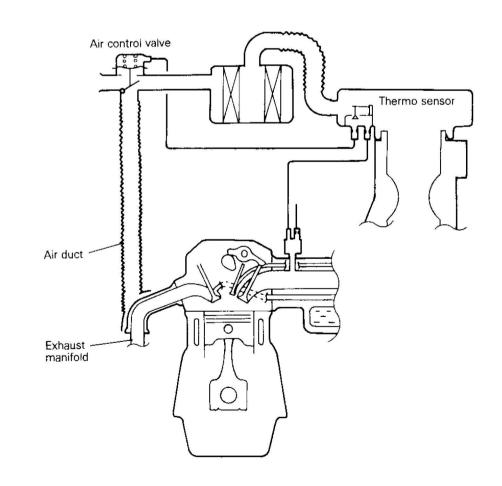
5. CHECKING OF THERMO VALVE (excluding Vehicles for General Export)

- Disconnect the vacuum hose (green stripes) from the thermo valve and connect the hand vacuum pump to the thermo valve.
- (2) Apply vacuum to check the thermo valve.

Engine coolant temperature	Normal condition
40°C (104°F) or less	Vacuum leaks
80°C (176°F) or more	Vacuum is maintained

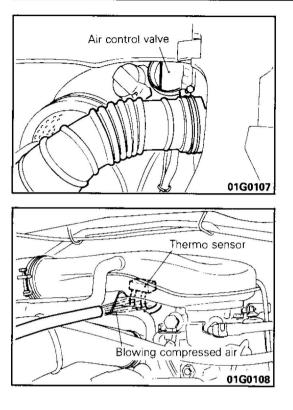
Caution

- 1. Do not apply spanners, etc., to the plastic parts of the thermo valve.
- 2. When installing, coat threads with a sealant (3M NUT Locking Part No. 4171 or equivalent) and tighten to a torque of 20-40 Nm (2-4 kgm, 14.5-28.9 ft.lbs.).
- 6. CHECKING OF SECONDARY AIR CONTROL VALVE (Vehicles with 4G32 or 4G63 engine for Europe and vehicles for Australia and vehicles for Hong Kong built from July 1991)
 - (1) Remove the secondary air control valve
 - (2) Blow air from the air cleaner side and make sure that the air does not pass through.


- (3) Connect a hand vacuum pump to the nipple of the secondary air control valve.
- (4) Apply a vacuum of 500 mmHg (19.7 in.Hg) and check that airtightness is maintained.

(5) Apply a vacuum of 170 mmHg (6.7 in.Hg) and checsk whether or not air passes through.

Direction of air	Normal condition
Air cleaner side → exhaust manifold side	Air passes through
Exhaust manifold side \rightarrow air cleaner side	Air does not pass through


(6) If inspection reveals any additional problems, replace the secondary air control valve.

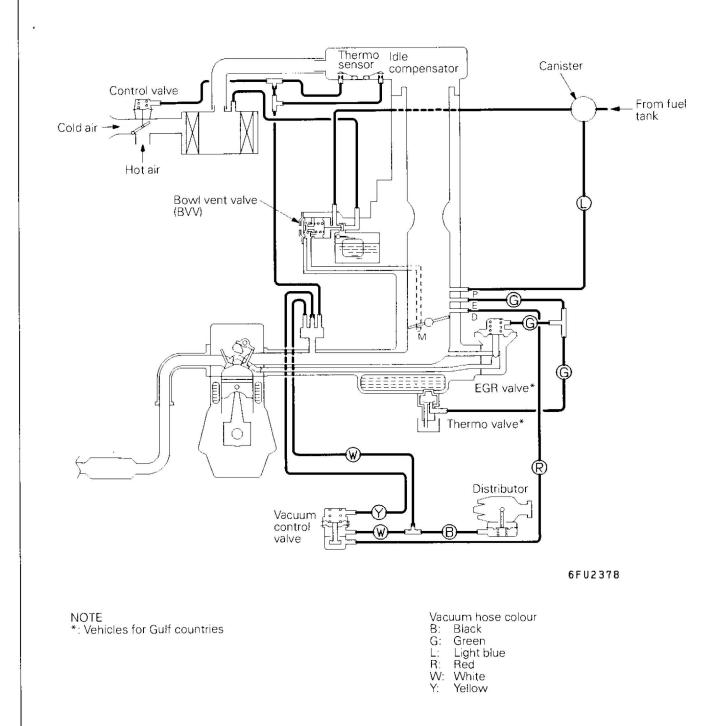
7. CHECKING OF INTAKE AIR TEMPERATURE CONTROL DEVICES (Vehicles for Europe, cold climate specification of General Export and vehicles for Australia and vehicles for Hong Kong built from July 1991)

03G0035

17-22 EMISSION CONTROL - Service Adjustment Procedures (4G32, 4G33, 4G63 engines)

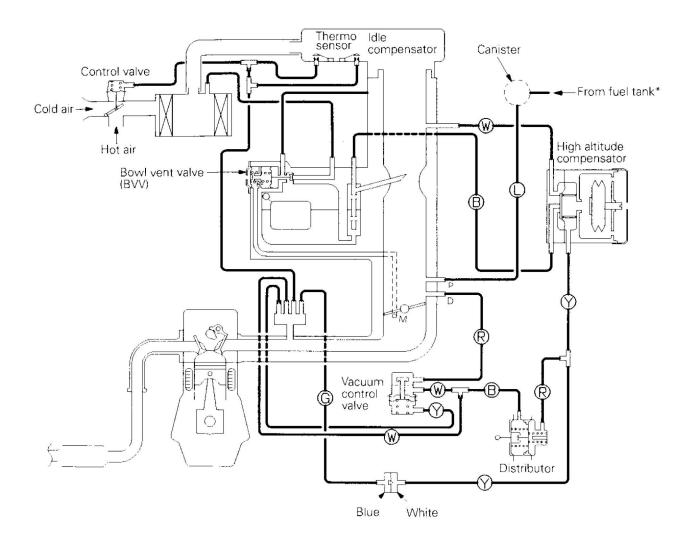
- (1) Remove the air cleaner cover assembly and air duct.(2) Idle the engine and inspect the opening and closing of the
- 2) Idle the engine and inspect the opening and closing of the air control valve.

Thermo sensor temperature	Normal condition
30°C (86°F) or less	The cool air port side closes
45°C (113°F) or higher	The cool air port side opens

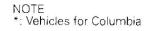

NOTE

If necessary, cool by blowing compressed air or warm using a hair dryer, etc.

(3) Disconnect the intake manifold side vacuum hose from the thermo sensor, place a finger over the end of the hose and check for vacuum.


SERVICE ADJUSTMENT PROCEDURES (4G92, 4G63 engines) – Vehicles with conventional carburetor built from June 1994 VACUUM HOSE PIPING DIAGRAM

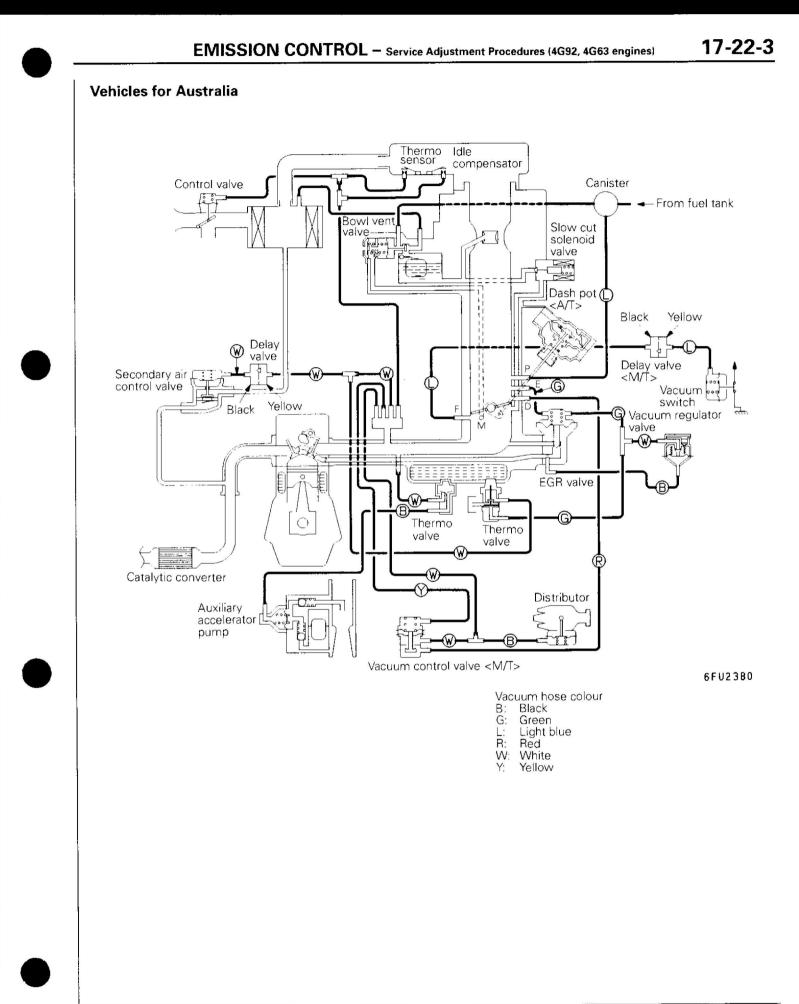
Vehicles for Europe (6B model) and General Export and Gulf countries



17-22-2 EMISSION CONTROL - Service Adjustment Procedures (4G92, 4G63 engines)

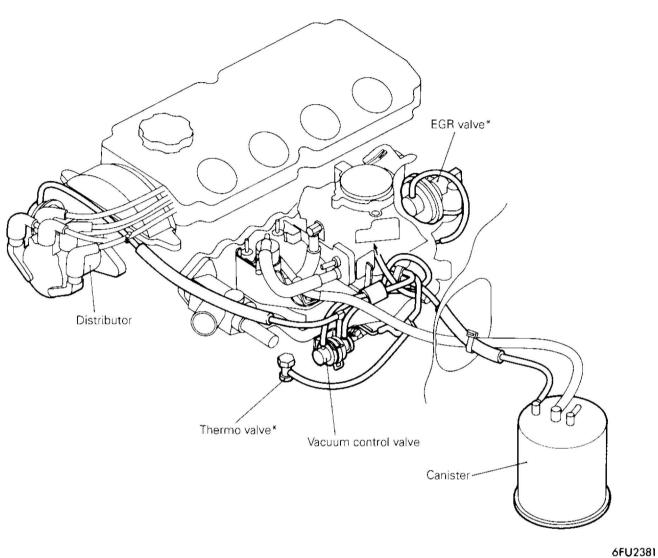
Vehicles for Columbia, Bolivia and Ecuador

6FU2379

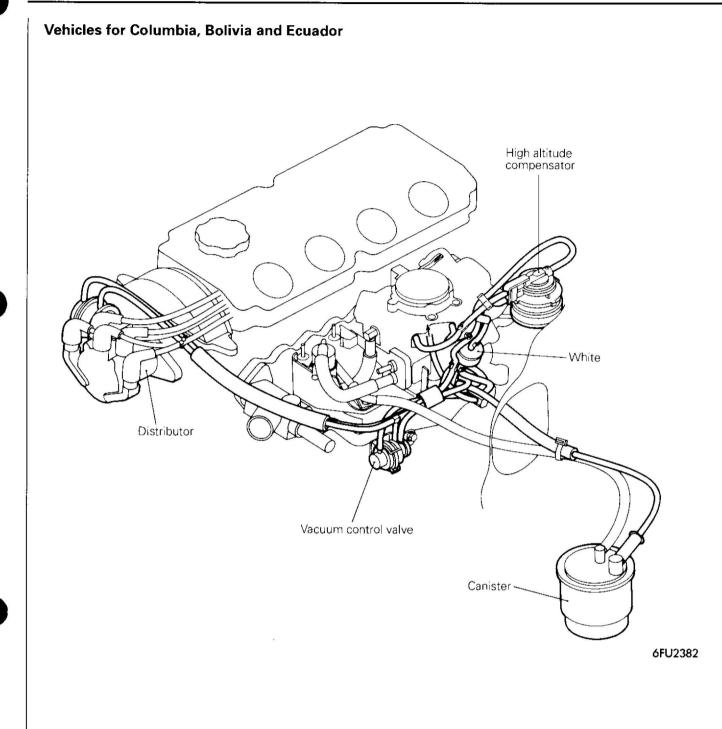


Vacuum hose colour B: G: Black

Green Light blue

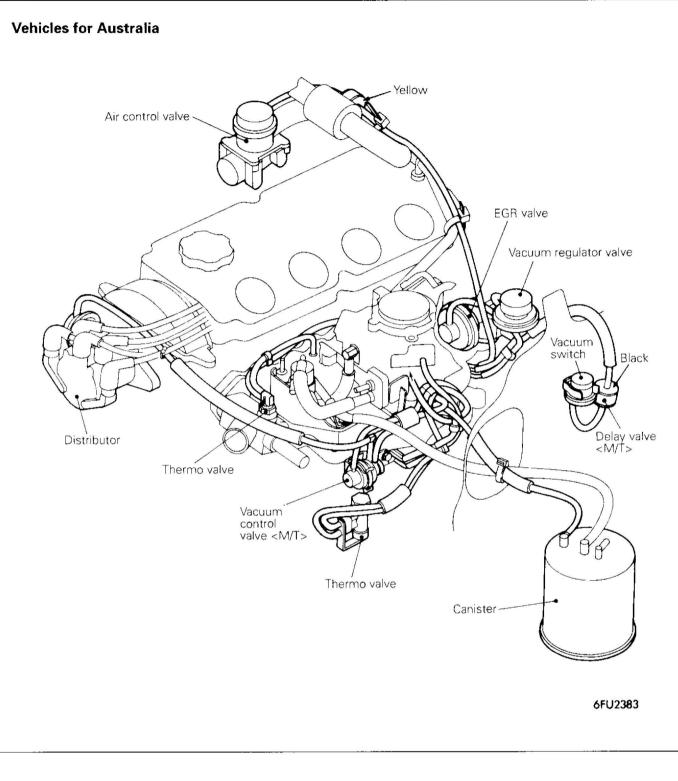

L: R:

- Red
- W: White Y: Yellow



VACUUM HOSE LAYOUT

Vehicles for Europe (6B model) and General Export and Gulf Countries



NOTE *: Vehicles for Gulf Countries

17-22-5

17-22-6 EMISSION CONTROL – Service Adjustment Procedures (4G92, 4G63 engines)

CAUTIONS ON INSPECTION

E17FFAA0

- (1) Inspect the various devices only after completing engine adjustment.
- (2) Inspect the hoses to make sure there are no disconnections, connection errors or damage.
- (3) Make sure there is no hose, pipe or port clogging, or cracks or damage in the hoses and pipes.
- (4) When replacing device hoses, always mount the replacement hose in the same position (direction) as the original.
- (5) When finished, check the connections as described in the service manual.

CRANKCASE EMISSION CONTROL SYSTEM

- 1. INSPECTION OF POSITIVE CRANKCASE VENTILATION SYSTEM
 - (1) Remove the ventilation hose from the positive crankcase ventilation valve.
 - (2) Remove the positive crankcase ventilation valve from the rocker cover.
 - (3) Reinstall the positive crankcase ventilation valve at the ventilation hose.
 - (4) Start the engine and run at idle.
 - (5) Place a finger at the opening of the positive crankcase ventilation valve and confirm that vacuum of the intake manifold is felt.

NOTE

At this moment, the plunger in the positive crankcase ventilation valve moves forward and backward.

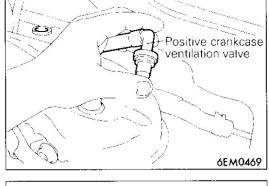
(6) If vacuum is not felt, clean the positive crankcase ventilation valve or replace it.

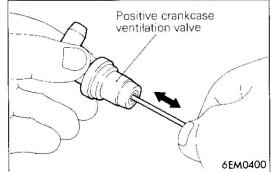
2. CHECKING OF POSITIVE CRANKCASE VENTILATION (PCV) VALVE

- (1) Insert a thin rod into the positive crankcase ventilation valve from the side shown in the illustration (rocker cover installation side), and move the rod back and forth to confirm that the plunger moves.
- (2) If the plunger does not move, there is a clogging in the positive crankcase ventilation valve. In this case, clean or replace the valve.

EVAPORATIVE EMISSION CONTROL SYSTEM

1. CHECKING OF BOWL VENT VALVE (BVV) Refer to P.17-17.

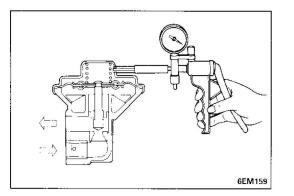

EXHAUST EMISSION CONTROL SYSTEM


1. CHECKING OF EGR SYSTEM (Vehicles for Gulf Countries)

Refer to P.17-17.

2. CHECKING OF EGR SYSTEM (Vehicles for Australia) Refer to P.17-18.

PWWE8608-O



C Mitsubishi Motors Corporation

Jun. 1994

17-22-8

3. CHECKING OF EGR VALVE (Vehicles for Gulf countries and Australia)

- (1) Remove the EGR valve and inspect for sticking, carbon deposites, etc. If found, clean with a suitable solvent so that the valve seats correctly.
- (2) Connect a hand vacuum pump to the EGR valve.
- (3) Apply a vacuum of 500 mmHg (19.7 in.Hg) and make sure that airtightness is maintained.
 - Check whether or not air is blown out of the EGR air passage.

Vehicles for Gulf Countries

Vacuum	Normal condition
40 mmHg (1.57 in.Hg) or less	Air is not blown out
120 mmHg (4.72 in.Hg) or more	Air is blown out

Vehicles for Australia (With a manual transmission)

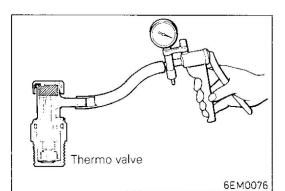
Vacuum	Normal condition
50 mmHg (1.97 in.Hg) or less	Air is not blown out
190 mmHg (7.48 in.Hg) or more	Air is blown out

Vehicles for Australia (With an automatic transmission)

Vacuum	Normal condition
50 mmHg (1.97 in.Hg) or less	Air is not blown out
220 mmHg (8.66 in.Hg) or more	Air is blown out

Caution

When mounting the EGR valve, use a new gasket and tighten to a torque of 17–26 Nm (1, 7–2, 6 kgm, 12–19 ft.lbs.)


4. CHECKING OF THERMO VALVE (Vehicles for Gulf Countries)

Caution

When removing and installing, do not apply the spanner to the resin section of the thermo valve.

(1) Connect a hand vacuum pump to the thermo valve nipple, and check the airtightness when a vacuum is applied.

Engine coolant temperature	Normal state
40°C (104°F) or less	Vacuum leaks
80°C (176°F) or more	Vacuum is maintained

© Mitsubishi Motors Corporation Jun. 1994

(2) After applying specified sealant to the thread section, tighten to the specified torque.

Specified sealant: 3M NUT Locking No. 4171 or equivalent

Specified torque: 20-50 Nm (2-5 kgm, 15-36 ft.lbs.)

- 5. CHECKING OF THERMO VALVE (Vehicles for Australia) Caution
 - 1. When removing and installing, do not apply the spanner to the resin section of the thermo valve.
 - 2. When disconnecting the vacuum hose, always make a mark so that the hose can be reconnected at its original position.
 - (1) Disconnect all vacuum hoses connected to the thermo valve.
 - (2) Connect a hand vacuum pump to each of the nipples, apply a vacuum and check whether or not air passes through the thermo valve.

Caution

Plug all nipples except the one to which the vacuum pump is connected.

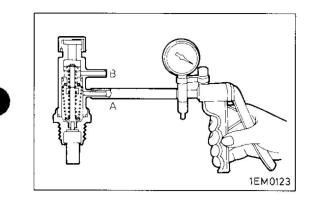
Nipple B

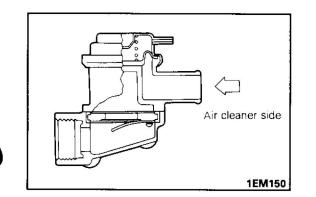
Engine coolant temperature	Normal condition
40°C (104°F) or less	Vacuum leaks
80°C (176°F) or more	Vacuum is maintained

Nipple A

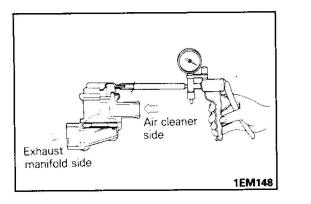
Engine coolant temperature	Normal condition
10°C (50°F) or less	Vacuum leaks
30°C (86°F) or more	Vacuum is maintained

(3) After applying specified sealant to the thread section, tighten to the specified torque.


Specified sealant: 3M NUT Locking No. 4171 or equivalent

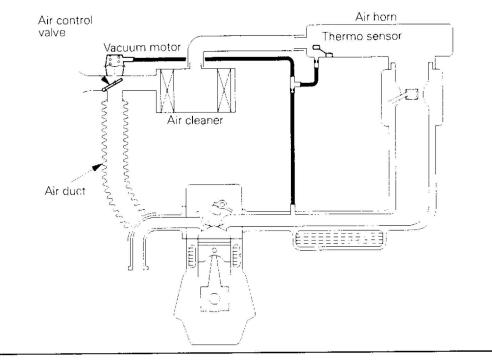

Specified torque: 20-40 Nm (2-4 kgm, 15-29 ft.lbs.)

6. CHECKING OF VACUUM REGULATOR VALVE (VRV) (Vehicles for Australia)


Refer to P.17-20.

- 7. CHECKING OF SECONDARY AIR CONTROL VALVE (Vehicles for Australia)
 - (1) Remove the secondary air control valve
 - (2) Blow air from the air cleaner side and make sure that the air does not pass through.

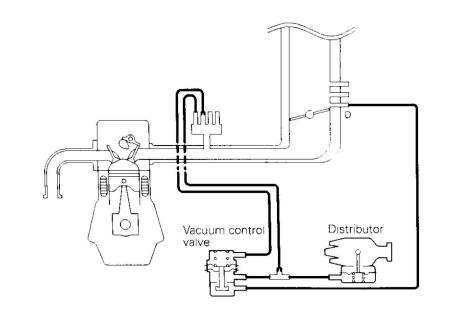
17-22-10 EMISSION CONTROL - Service Adjustment Procedures (4G92, 4G63 engines)

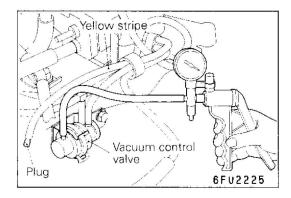


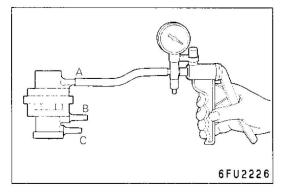
- (3) Connect a hand vacuum pump to the nipple of the secondary air control valve.
- (4) Apply a vacuum of 500 mmHg (19.7 in.Hg) and check that airtightness is maintained.
- (5) Apply a vacuum of 250 mmHg (9.8 in.Hg) and check whether or not air passes through.

Direction or air	Normal state
Air cleaner side → exhaust manifold side	Air passes through
Exhaust manifold side > air cleaner side	Air does not pass through

(6) If inspection reveals any additional problems, replace the secondary air control valve.


8. CHECKING OF INTAKE AIR TEMPERATURE CONTROL DEVICES




6FU2255

Refer to P.17-21 for the inspection procedure.

 DECELERATION SPARK ADVANCE CONTROL <Except vehicles with automatic transmission for Australia>

Deceleration spark advance control inspection

- (1) Connect a timing light.
- (2) Disconnect the vacuum hose (yellow stripe) from the vacuum control valve, and then connect a hand vacuum pump to the vacuum control valve.

6FU2207

- (3) Plug the end of the vacuum hose (yellow stripe) which was disconnected.
- (4) Start the engine and run it at idle.
- (5) Check that the ignition timing advances (approximately 20°) when 600 mmHg (24 in.Hg.) of negative pressure or more is applied.

Inspection of vacuum control valve

- (1) Connect a hand vacuum pump to nipple A of the vacuum control valve.
- (2) Apply 675 mmHg (27 in.Hg.) of negative pressure, and check that the negative pressure is maintained.
- (3) Apply negative pressure and check whether air flows between nipple B and nipple C.

Vacuum	Passage of air
0	Yes
600 mmHg (24 in.Hg)	No

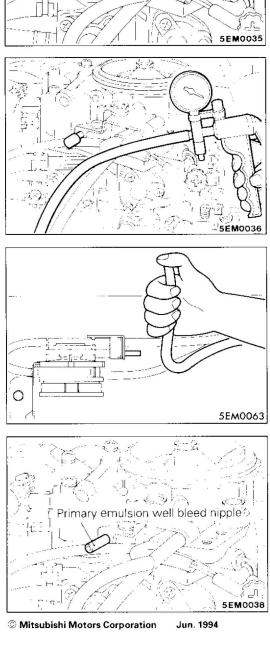
10. CHECKING OF HIGH ALTITUDE COMPENSATION SYSTEM

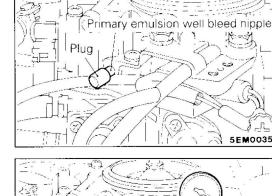
NOTE

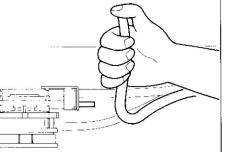
1. The range between altitudes of 1,500 m (4,921 ft.) and 2,500 m (8,202 ft.) is the range where the high altitude compensator (HAC) switches from operating to not operating. Thus the operation in this range of altitude will be unstable.

Accordingly, do not check the operation of the HAC within this range of altitude. Move the vehicle to an altitude of either 1,500 m (4,921 ft.) or below, or to an altitude of 2,500 m (8,202 ft.) or above before checking.

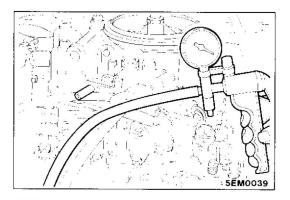
2. When disconnecting the vacuum hose, put a mark on the hose so that it may be reconnected at original position.

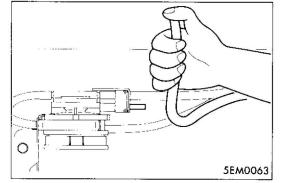

Inspection at altitude below approx. 1,500 m (4,921 ft.)


- (1) Remove the air horn
- (2) Disconnect the vacuum hose (black) from the carburetor primary emulsion well bleed nipple and plug the nipple.
- (3) Connect a hand vacuum pump to the vacuum hose and check that vacuum is held when applied while running the engine at idle.
- (4) Connect the disconnected vacuum hose to original position.


- (5) While running the engine at idle, disconnect the vacuum hose (vellow stripe) from the HAC and hold a finger at the hose end to check that vacuum is felt.
- (6) Connect the disconnected vacuum hose to original position.
- (7) Run the engine at approximately 3,000 r/min with no load, and check that the engine runs normally.

Inspection at altitude above approx. 2,500 m (8,202 ft.)


- (1) Remove the air horn.
- (2) Disconnect the vacuum hose (black) from the carburetor primary emulsion well bleed nipple.



- (3) Connect a hand vacuum pump to the vacuum hoses and while running the engine at idle, apply vacuum from the vacuum pump to check that vacuum leaks and does not build up.
 (4) Connect the discussional statement of the vacuum leaks and does not build up.
- (4) Connect the disconnected vacuum hose to original position.

- (5) While running the engine at idle, disconnection the vacuum hose (yellow stripe) from the HAC and hold a finger at the hose end to check that vacuum is felt.
- (6) Connect the disconnected vacuum hose to original position.
- (7) Run the engine at approximately 3,000 r/min with no load, and check that the engine runs normally with no black smoke being emitted.

11. CHECKING OF HIGH ALTITUDE COMPENSATOR

NOTE

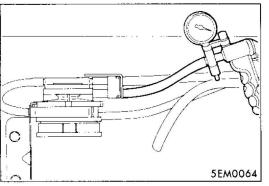
1. The range between altitudes of 1,500 m (4,921 ft.) and 2,500 m (8,202 ft.) is the range where the high altitude compensator (HAC) switches from operating to not operating. Thus the operation in this range of altitude will be unstable.

Accordingly, do not check the operation of the HAC within this range of altitude. Move the vehicle to an altitude of either 1,500 m (4,921 ft.) or below, or to an altitude of 2,500 m (8,202 ft.) or above before checking.

2. When disconnecting the vacuum hose, put a mark on the hose so that it may be reconnected at original position.

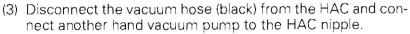
Inspection at altitude below approx. 1,500 m (4,921 ft.)

- (1) Disconnect the vacuum hose (yellow stripe) from the HAC and connect a hand vacuum pump to the HAC nipple.
- (2) Apply vacuum and check that it leaks and does not hold.
- (3) Connect the disconnected vacuum hose to original position.
- (4) Disconnect the vacuum hose (black) from the HAC and connect a hand vacuum pump to the HAC nipple.
- (5) Check that vacuum holds when applied.
- (6) Connect the disconnected vacuum hose to original position.

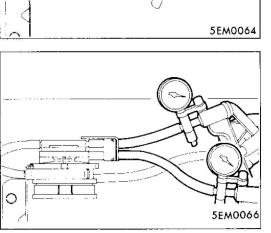


© Mitsubishi Motors Corporation

5EM0065


Jun. 1994

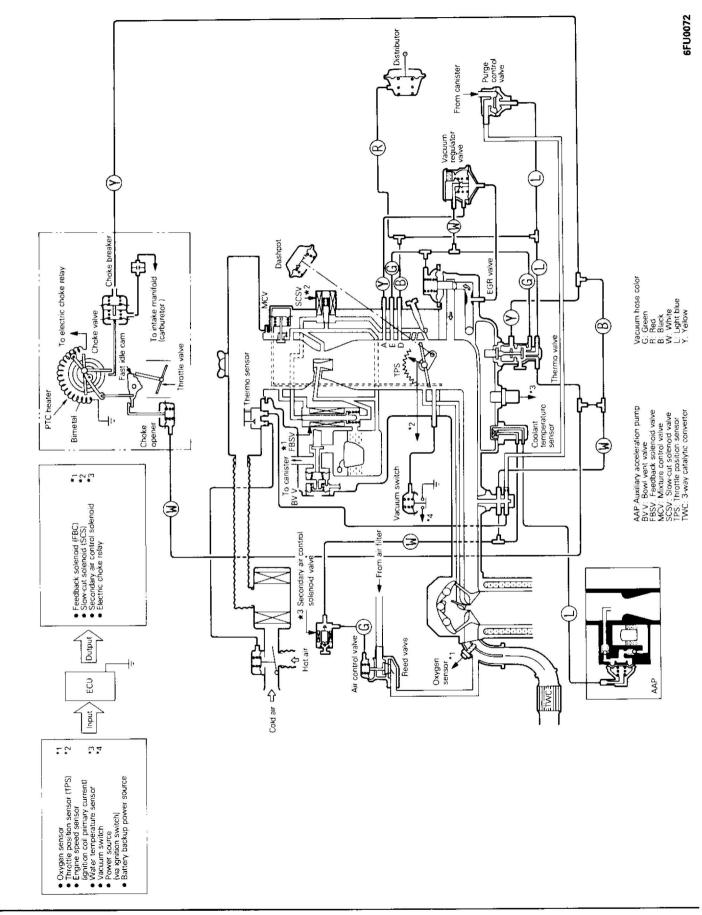
17-22-14 EMISSION CONTROL – Service Adjustment Procedures (4G92, 4G63 engines)

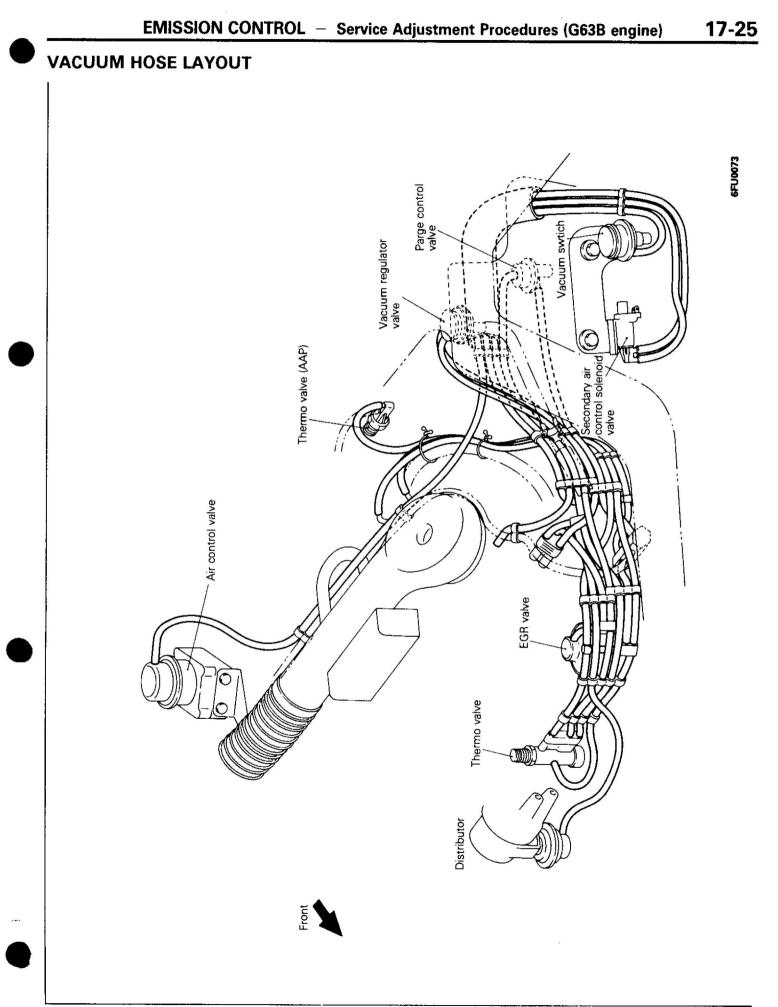


Inspection at altitude above approx. 2,500 m (8,202 ft.)

- (1) Disconnect the vacuum hose (yellow stripe) from the HAC and connect a hand vacuum pump to the HAC nipple.
- (2) Check that vacuum holds when applied.

- (4) Holding the vacuum applied in procedure 2, apply vacuum and check that it leaks and does not hold.
- (5) Connect the disconnected vacuum hose to original position.

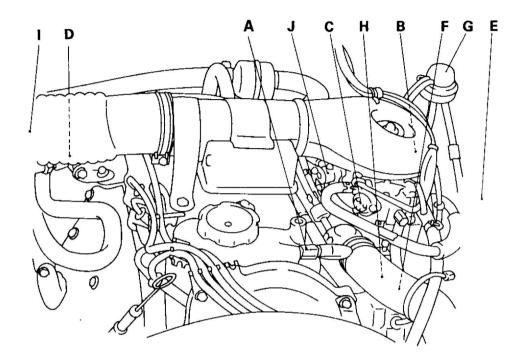



SERVICE ADJUSTMENT PROCEDURES (G63B engine) – Vehicles built up to May 1994

EMISSION CONTROL DEVICES REFERENCE TABLE

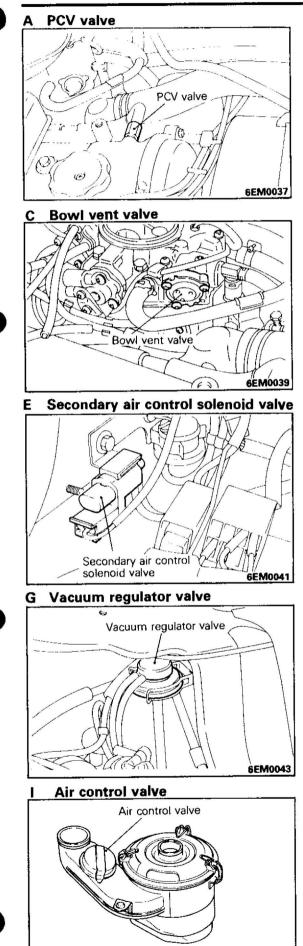
Emission control system Related parts	Crankcase emission control system	Evaporative emission control system	Jet air system	Air fuel ratio control system	Three catalyst converter	Secondary air supply system	Exhaust gas recirculation (EGR) system	intake air temperature control system	Deceleration	Reference page for each part inspection
PCV valve	×			,						17–28
Bowl vent valve		×								17-30
Purge control valve		×						+		17-29
Thermo valve		×					×			17-29
Canister		×								
Overfill limiter (2-way valve)		×								
Jet valve			×							Engine (Group 11)
FBC system component				×		×				Fuel (Group 13)
Three catalyst converter					×					I
Secondary air control valve (with reed valve)						×				17–31
Secondary air control solenoiod valve						×				17–32
EGR valve			-1 -1 -1 -1 -1				×			17-34
Vacuum regulator valve							×			17-34
Check valve									1	
Air control valve			· ·					×		17–35
Thermo sensor								×		17–35
Mixture control valve		3							×	17-34

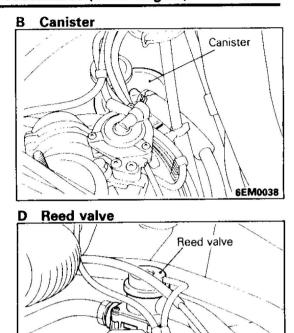
VACUUM HOSE PIPING DIAGRAM



© Mitsubishi Motors Corporation NOV. 86

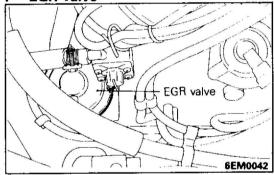
17-26 EMISSION CONTROL – Service Adjustment Procedures (G63B engine)


COMPONENT LAYOUT

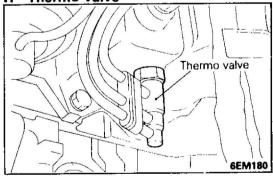

6EM0036

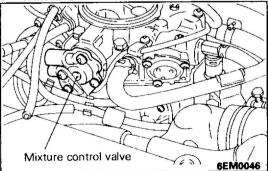
- A PCV valve
- B Canister
- C Bowl vent valve
- D Reed valve
- E Secondary air control solenoid valve
- F EGR valve
- G Vacuum regulator valve
- H Thermo valve
- I Air control valve
- J Mixture control valve

EMISSION CONTROL – Service Adjustment Procedures (G63B engine)


© Mitsubishi Motors Corporation NOV. 86

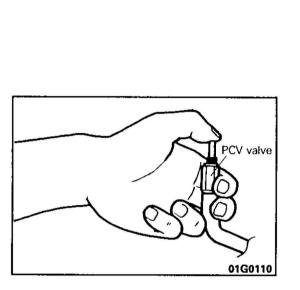
17-27


2


(1)

6EM0040

H Thermo valve


Mixture control valve

PWWE8608

6EM0045

17-28 EMISSION CONTROL - Service Adjustment Procedures (G63B engine)

CAUTIONS ON INSPECTION

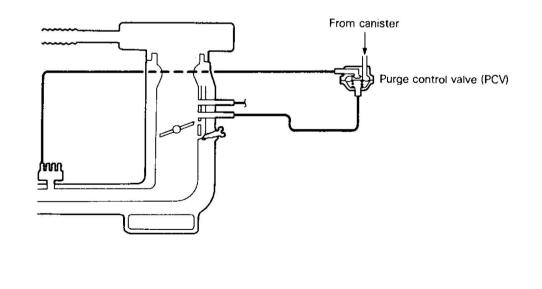
E17FFAA1

- Inspect the various devices only after completing engine adjustment.
- 2. Inspect the hoses to make sure there are no disconnections, connection errors or damage.
- 3. Make sure there is no hose, pipe or port clogging, or cracks or damage in the hoses and pipes.
- 4. When replacing device hoses, always mount the replacement hose in the same position (direction) as the original.
- 5. When finished, check the connections as described in the service manual.

CRANKCASE EMISSION CONTROL SYSTEM E17FAAB1

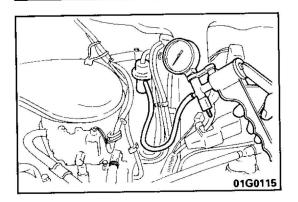
1. CHECKING OF PCV VALVE

- After disconnecting the ventilation hose from the positive crankcase ventilation (PCV) valve, remove the PCV valve from the rocker cover and again connect the ventilation hose.
- (2) Run the engine at idling speed, place a finger over the end of the PCV valve opening and check the intake manifold vacuum.


NOTE

The plunger inside the PCV valve will move back and forth.

(3) If vacuum cannot be felt against the finger, clean the PCV valve and ventilation hose with cleaning solvent, or else replace.


EVAPORATIVE EMISSION CONTROL SYSTEM

1. CHECKING OF PURGE CONTROL SYSTEM

F17FRAD

EMISSION CONTROL – Service Adjustment Procedures (G63B engine) 17-29

- (1) Disconnect the black vacuum hose from the intake manifold nipple and plug the nipple; then connect the disconnected black vacuum hose to a hand vacuum pump.
- (2) Inspect the following items with the engine cold [coolant temperature: 40°C (104°F) or less] and hot [coolant temperature: 80°C (176°F) or higher].

When engine is cold

Vacuum	Engine status	Normal condition
400 mmHg (15.7 in.Hg)	2,500 r/min.	Vacuum is maintained

When engine is hot

Vacuum	Engine status	Normal condition
400 mmHg (15.7 in.Hg)	Idling	Vacuum is maintained
400 mmHg (15.7 in.Hg)	2,500 r/min.	Vacuum leaks

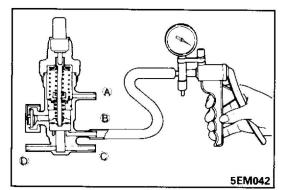
1EM143

2. CHECKING. OF PURGE CONTROL VALVE (PCV)

- (1) Remove the purge control valve.
- (2) Connect a hand vacuum pump to the nipple of the PCV.
- (3) Apply a vacuum of 400 mmHg (15.7 in.Hg) and make sure that airtightness is maintained.
- (4) Check whether or not air in lightly blown out from the nipple on the canister side.

Hand vacuum pump vacuum	Normal condition
0 mmHg (0 in.Hg) (no vacuum)	Air is not blown out
200 mmHg (7.9 in.Hg)	Air is blown out

3. CHECKING OF THERMO VALVE


NOTE

This thermo valve controls the choke breaker, EGR and choke opener.

Caution

- 1. Do not apply spanners, etc., to the plastic parts of the thermo valve.
- When installing, coat threads with a sealant (3M NUT Locking Part No. 4171 or equivalent) and tighten to a torque of 20 40 Nm (2 4 kgm, 14.5 28.9 ft.lbs.).
- When disconnecting the vacuum hose, always make a mark so that the hose can be reconnected at original position.

17-30 EMISSION CONTROL - Service Adjustment Procedures (G63B engine)

- (1) Disconnect all vacuum hoses connected to the thermo valve.
- (2) Connect a hand vacuum pump to each of the nipples, apply a vacuum and check whether or not air passes through the thermo valve.

Caution

Plug all nipples except the one to which the vacuum pump is connected.

Nipple B, C, D

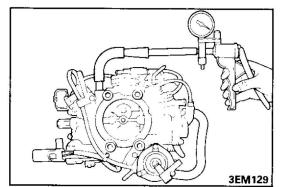
Engine coolant temperature	Normal condition
50°C (122°F) or less	Vacuum leaks
80°C (176°F) or more	Vacuum is maintained

Nipple A

Engine coolant temperature	Normal condition
10°C (50°F) or less	Vacuum leaks
30°C (86°F) or more	Vacuum is maintained

4. CHECKING OF 2-WAY VALVE

Refer to GROUP 13 FUEL - Fuel Line.


5. CHECKING OF CANISTER

Refer to GROUP 13 FUEL - Fuel Line.

6. CHECKING OF BOWL VENT VALVE (BVV)

Caution

Inspect after the engine has cooled. Fuel may be discharged from the BVV nipple if the engine is still warm.

- (1) Remove the air horn.
- (2) Disconnect the bowl vapor hose from the bowl vent valve (BVV) nipple and connect a hand vacuum pump to the BVV nipple.
- (3) Apply a vacuum of 100 mmHg (3.94 in.Hg) to the BVV and inspect.

Engine status	Normal condition
Stop	Vacuum leaks
Idling	Vacuum is applied

EXHAUST EMISSION CONTROL SYSTEM

- CHECKING OF AIR-FUEL RATIO CONTROL SYSTEM (FBC) Refer to GROUP 13 FUEL – Service Adjustment Procedures (FBC).
- 2. CHECKING OF ENGINE COOLANT TEMPERATURE SEN-SOR

Refer to GROUP 13 FUEL – Service Adjustment Procedures (FBC).

3. CHECKING OF ENGINE SPEED SENSOR

Refer to GROUP 13 FUEL - Service Adjustment Procedures (FBC).

4. CHECKING OF VACUUM SWITCH

Refer to GROUP 13 FUEL - Service Adjustment Procedures (FBC).

5. CHECKING OF SECONDARY AIR SUPPLY SYSTEM (1) Disconnect the air supply hose from the air horn, place a small steel plate over the end of the hose and check the air

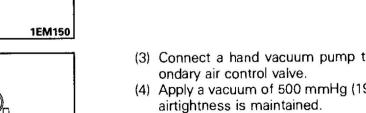
intake.

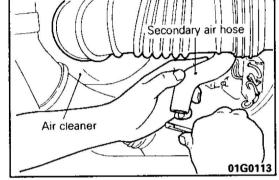
Coolant temperature	Engine status	Air intake
20-40°C (68-104°F)	-	Yes
70°C (158°F) or higher	Idling	Yes (within 70 sec. after starting the engine)
		No (70 sec. or more after starting the engine)
	Rapid deceleration from 4,000 r/min.	Yes

Caution

Note that exhaust blowback sometimes occurs if the secondary air control valve is faulty.

6. CHECKING OF SECONDARY AIR CONTROL VALVE


- (1) Remove the secondary air control valve.
- (2) Blow air from the air cleaner side and make sure that the air does not pass through.


- (3) Connect a hand vacuum pump to the nipple of the secondary air control valve.
- (4) Apply a vacuum of 500 mmHg (19.7 in.Hg) and check that airtightness is maintained.

¢ 1 Exhaust manifold side Air cleaner side

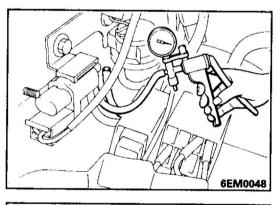
Air cleaner side

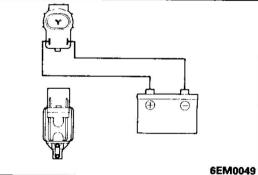
1EM148

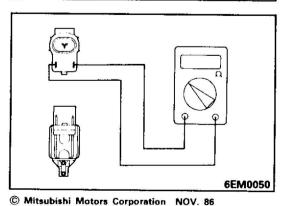
PWWE8608

17-32 EMISSION CONTROL – Service Adjustment Procedures (G63B engine)

(5) Apply a vacuum of 170 mmHg (6.7 in.Hg) and check whether or not air passes through.

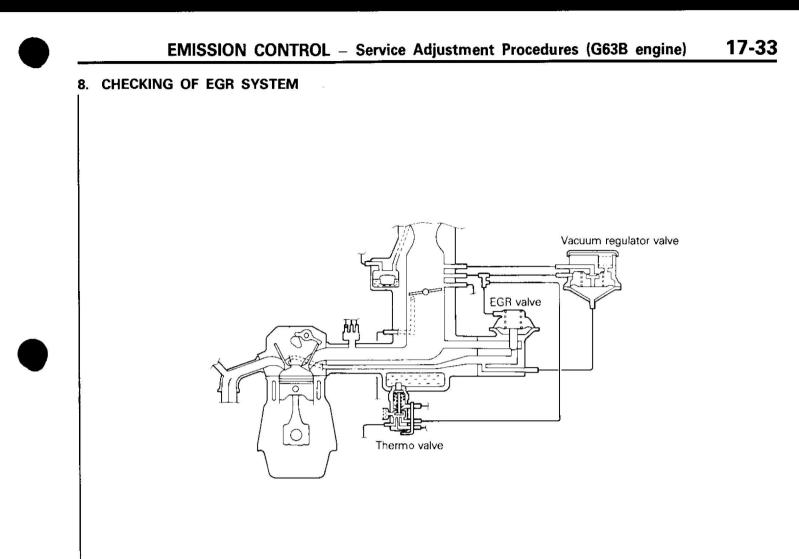

Direction of air	Normal condition
Air cleaner side → exhaust manifold side	Air passes through
Exhaust manifold side \rightarrow air cleaner side	Air does not pass through


- (6) If inspection reveals any additional problems, replace the secondary air control valve.
- 7. CHECKING OF SECONDARY AIR CONTROL SOLENOID VALVE

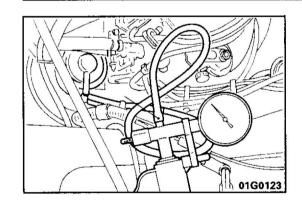

NOTE

when disconnecting the vacuum hose, always make a mark so that the hose can be reconnected at original position.

- (1) Disconnect the vacuum hose (white stripes, green stripes) from the solenoid valve.
- (2) Disconnect the harness connector.
- (3) Connect a hand vacuum pump to the nipple to which the vacuum hose with white stripes was connected.



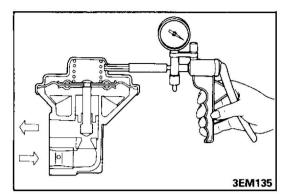
(4) Check airtightness by applying a vacuum with voltage applied directly from the battery to the solenoid valve terminal and without applying voltage.


Battery voltage	Solenoid valve oppo- site nipple	Normal condition
Applied	Open	Vacuum leaks
	Blocked with finger	Vacuum maintained
Not applied	Open	Vacuum maintained

(5) Measure the resistance of the solenoid value. Standard value: 38-44 Ω [at 20°C (68°F)]

03G0041

- (1) Disconnect the vacuum hose (green stripes) from the carburettor throttle body and connect the hand vacuum hose to the vacuum hose.
- (2) Inspect the following items with the engine cold [coolant temperature: 40°C (104°F) or less] and hot [coolant temperature: 80°C (176°F) or higher].

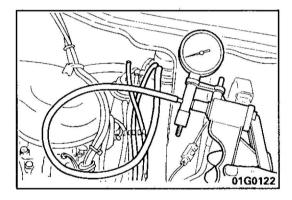

When engine is cold

Vacuum	Engine status	Normal condition
Try applying vacuum	3,500 r/min.	Vacuum leaks to atmosphere from thermo valve

When engine is hot

Vacuum	Engine status	Normal condition
Apply vacuum	ldling	Vacuum leaks
	3,500 r/min.	Leak the vacuum till it is approx. 80 mmHg (3.15 in.Hg)

17-34


9. CHECKING OF EGR VALVE

- (1) Remove the EGR valve and inspect for sticking, carbon deposite, etc. If found, clean with a suitable solvent so that the valve seats correctly.
- (2) Connect a hand vacuum pump to the EGR valve.
- (3) apply a vacuum of 500 mmHg (19.7 in.Hg) and make sure that airtightness is maintained.
- (4) Check whether or not air is blown out of the EGR air passage.

Vacuum	Normal condition
40 mmHg (1.57 in.Hg) or less	Air is not blown out
220 mmhg (8.66 in.Hg) or more	Air is blown out

Caution

When mounting the EGR valve, use a new gasket and tighten to a torgue of 19-28 Nm (1.9-2.8 kgm, 14-20 ft.lbs.).

Valve 3EM139

10. CHECKING OF VACUUM REGULATOR VALVE

- (1) Disconnect the vacuum hose (white stripes) from the vacuum regulator valve (VRV) and connect the hand vacuum pump to the VRV.
- (2) Apply a vacuum of 400 mmHg (15.7 in Hg) to the VRV and inspect.

Engine status	Normal condition
Stop	Vacuum leaks
3,500 r/min.	Vacuum is maintained

11. CHECKING OF EGR VALVE CONTROL VACUUM

Refer to GROUP 13 FUEL - Service Adjustment Procedures (FBC).

12. CHECKING OF VRV CONTROL VACUUM

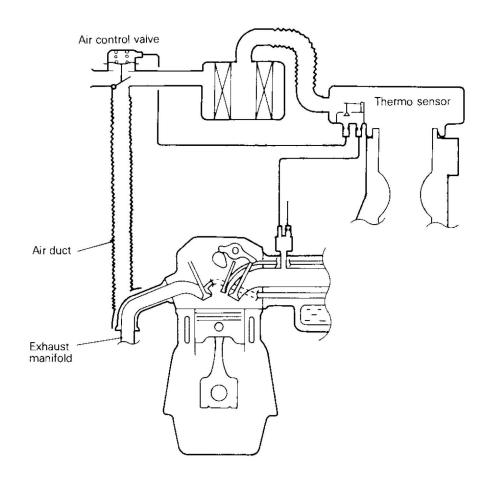
Refer to GROUP 13 FUEL - Service Adjustment Procedures (FBC).

13. CHECKING OF THERMO VALVE

Refer to the Purge Control System item.

14. CHECKING OF MIXTURE CONTROL VALVE (MCV) Caution

Inspect with the engine warm.


- (1) Remove the air horn.
- (2) Start the engine and check the operation of the MCV valve and sound of the intake air when the throttle valve is rapidly opened and closed.

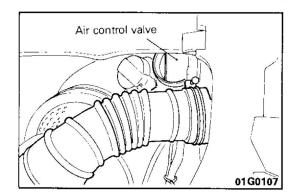
	Normal condition	
Engine speed	MCV valve operation	Intake air sound
Throttle lever operated	Opens and quickly closes	Audible
Idling	Closed	Inaudible

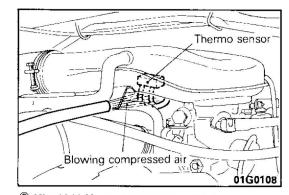
C Mitsubishi Motors Corporation NOV. 86

PWWE8608

15. CHECKING OF INTAKE AIR TEMPERATURE CONTROL DEVICES

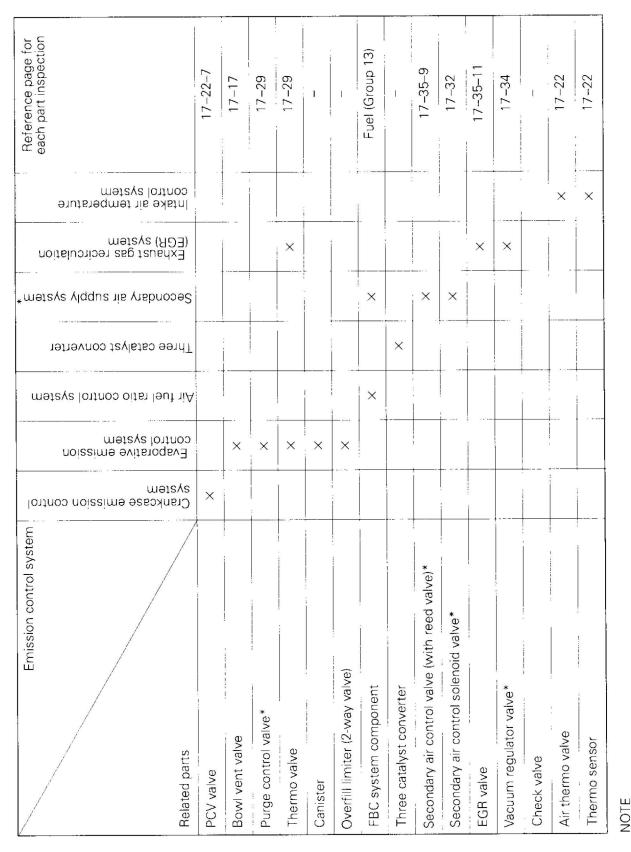
03G0035


- (1) Remove the air cleaner cover assembly and air duct.
- (2) Idle the engine and inspect the opening and closing of the air control valve.

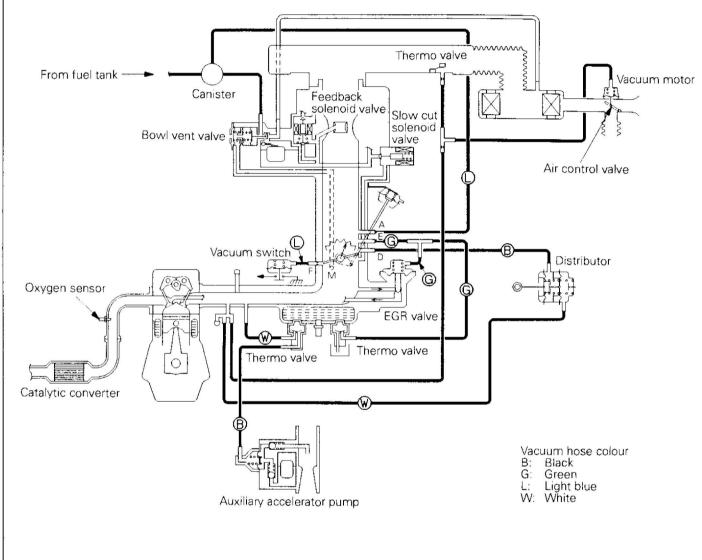

Thermo sensor temperature	Normal condition
30°C (86°F) or less	The cool air port side closes
45°C (113°F) or higher	The cool air port side opens

NOTE

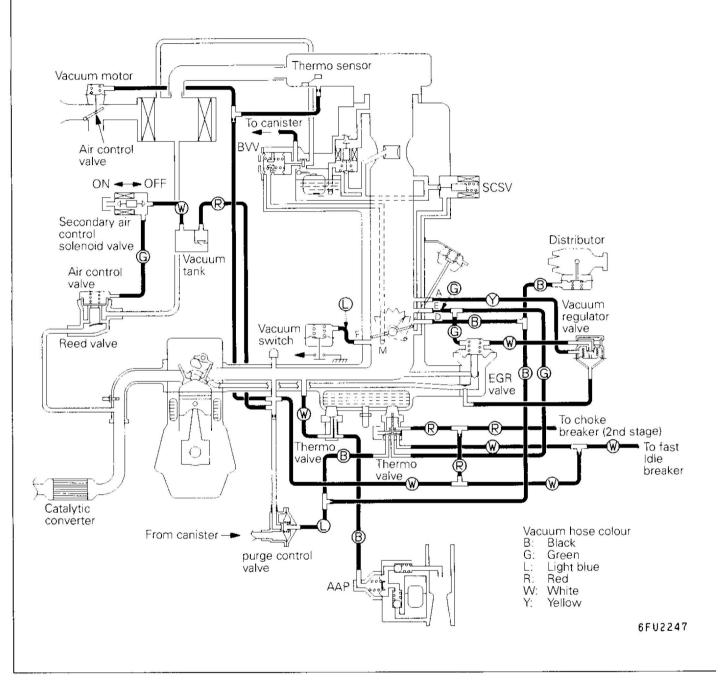
If necessary, cool by blowing compressed air or warm using a hair dryer, etc.

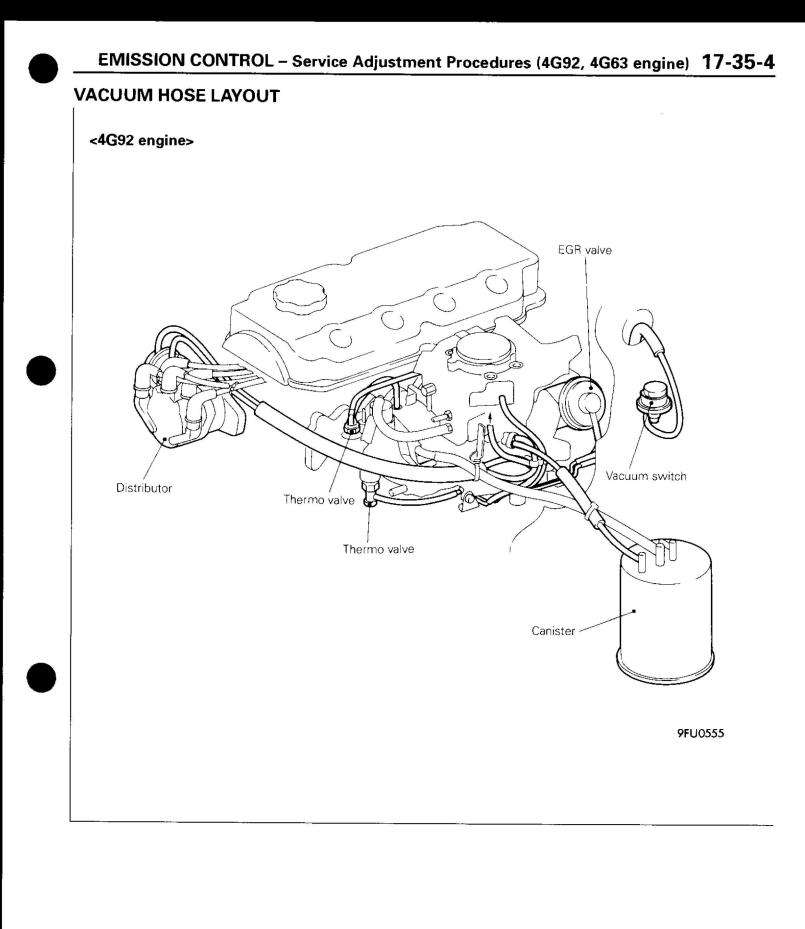

(3) Disconnect the intake manifold side vacuum hose from the thermo sensor, place a finger over the end of the hose and check for vacuum.

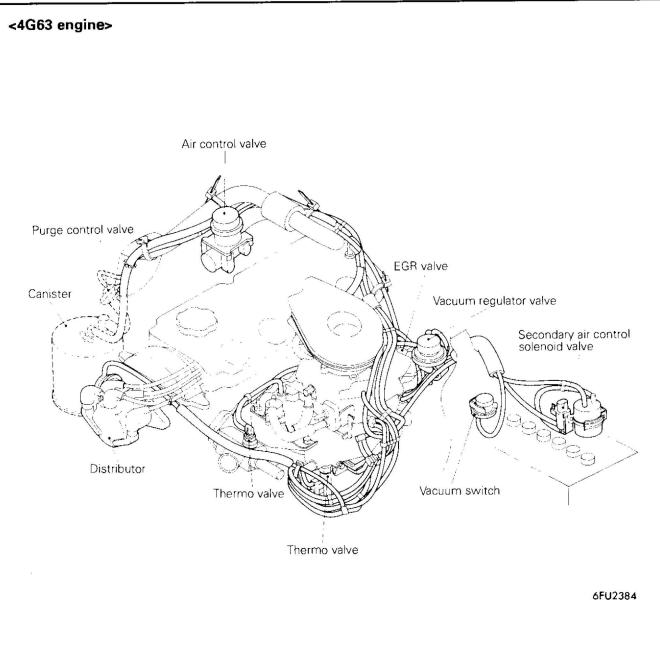
SERVICE ADJUSTMENT PROCEDURES (4G92, 4G63 engine) – Vehicles with FBC built from June 1994


EMISSION CONTROL DEVICES REFERENCE TABLE

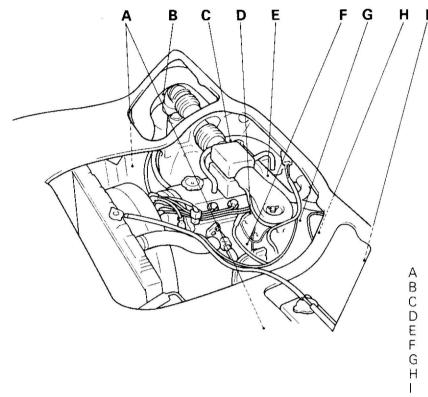
* : Vehicles with 4G63 engine.


VACUUM HOSE PIPING DIAGRAM

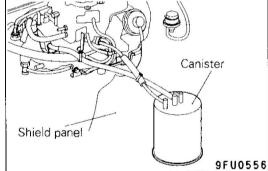

<4G92 engine>

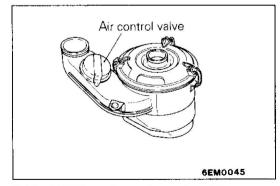

9FU0554

<4G63 engine>

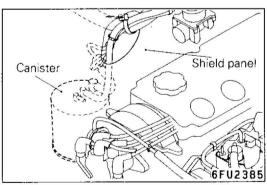


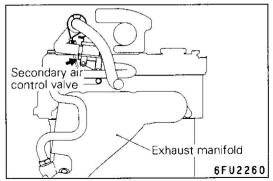
17-35-5 EMISSION CONTROL – Service Adjustment Procedures (4G92, 4G63 engine)


COMPONENT LAYOUT

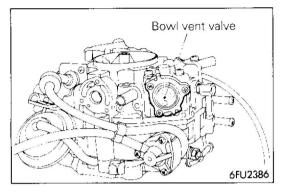

- Canister
- B Air control valve
- C Secondary air control valve
- D Bowl vent valve
- E PCV valve
- F Thermo valve
- G EGR valve
- H Vacuum regulator valve
 - Secondary air control solenoid valve

16G0653

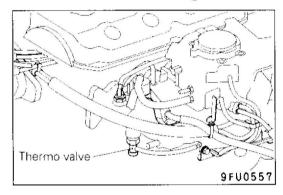

A Canister <4G92 engine>


B Air control valve

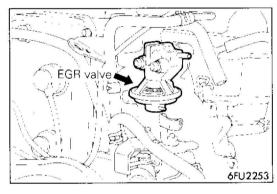
A Canister (4G63 engine)

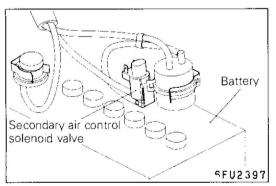


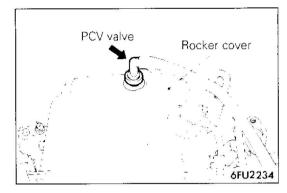
C Secondary air control valve

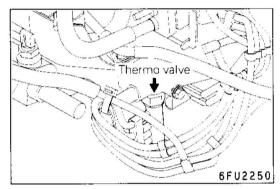


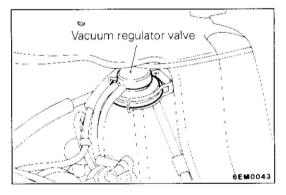
© Mitsubishi Motors Corporation Jun. 1994


D Bowl vent valve


F Thermo valve <4G92 engine>


G EGR valve


I Secondary air control solenoid valve


E PCV valve

F Thermo valve <4G63 engine>

H Vacuum regulator valve <4G63 engine>

Refer to P.17-28.

CRANKCASE EMISSION CONTROL SYSTEM

Refer to P.17-22-7.

EVAPORATIVE EMISSION CONTROL SYSTEM

1. CHECKING OF PURGE CONTROL SYSTEM <4G63 engine>

Refer to P.17-28.

- CHECKING OF PURGE CONTROL VALVE (PCV) <4G63 engine> Refer to P.17-29.
- 3. CHECKING OF THERMO VALVE (PCV) <4G63 engine> Refer to P.17-29.
- 4. CHECKING OF 2-WAY VALVE Refer to GROUP 13 FUEL – Fuel Tank.
- 5. CHECKING OF CANISTER

Refer to GROUP 13 FUEL - Fuel Line.

6. CHECKING OF BOWL VENT VALVE (BVV) Refer to P.17-17.

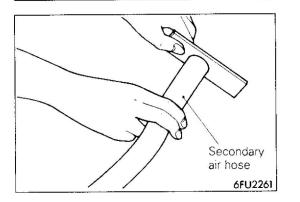
EXHAUST EMISSION CONTROL SYSTEM E17FCAF

1. CHECKING OF AIR-FUEL RATIO CONTROL SYSTEM (FBC)

Refer to GROUP 13 FUEL – Service Adjustment Procedures (FBC).

2. CHECKING OF ENGINE COOLANT TEMPERATURE SEN-SOR

Refer to GROUP 13 FUEL – Service Adjustment Procedures (FBC).


3. CHECKING OF ENGINE SPEED SENSOR

Refer to GROUP 13 FUEL – Service Adjustment Procedures (FBC).

4. CHECKING OF VACUUM SWITCH

Refer to GROUP 13 FUEL – Service Adjustment Procedures (FBC).

17-35-9 EMISSION CONTROL – Service Adjustment Procedures (4G92, 4G63 engine)

5. CHECKING OF SECONDARY AIR SUPPLY SYSTEM <4G63 engine>

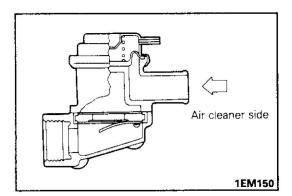
Caution

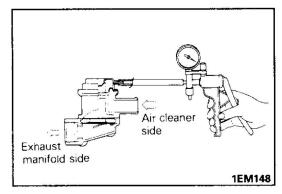
Note that exhaust blowback sometimes occurs if the secondary air control valve is faulty.

(1) Disconnect the air supply hose from the air cleaner, place a small steel plate over the end of the hose and check the air intake.

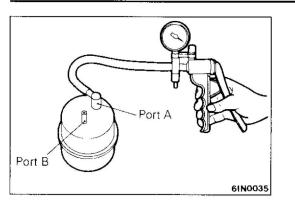
Engine coolant temperature	Engine status	Air suction
20-40°C (68-104°F)	2,000 r/min.	Yes
70°C (158°F) or higher	2,000 r/min.	Yes (within 70 sec. after starting the engine)
		No (70 sec. or more after starting the engine)
	Idling	Yes

6. CHECKING OF SECONDARY AIR CONTROL VALVE <4G63 engine>

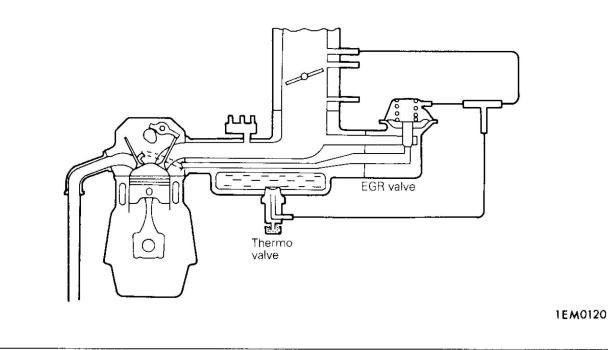

- (1) Remove the secondary air control valve.
- (2) Blow air from the air cleaner side and make sure that the air does not pass through.
- (3) Connect a hand vacuum pump to the nipple of the secondary air control valve.
- (4) Apply a vacuum of 500 mmHg (19.7 in.Hg) and check that airtightness is maintained.
- (5) Apply a vacuum of 110 mmHg (4.3 in.Hg) and check whether or not air passes through.

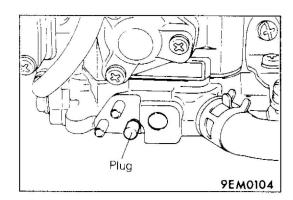

Direction of air		Normal condition
Air cleaner side → exhaust manifold side		Air passes through
Exhaust manifold side air cleaner side	>	Air does not pass through

(6) If inspection reveals any additional problems, replace the secondary air control valve.


7. CHECKING OF SECONDARY AIR CONTROL SOLENOID VALVE <4G63 engine>

Refer to P.17-32.


EMISSION CONTROL – Service Adjustment Procedures (4G92, 4G63 engine) 17-35-10



8. INSPECTION OF VACUUM TANK

- Connect a hand vacuum pump to port A of the vacuum tank and apply a vacuum of 500 mmHg (20 in.Hg).
 Make sure that the tank is completely airtight with no vacuum leaks.
- (2) Connect a hand vacuum pump to port B and apply a vacuum. Make sure that the vacuum leaks.

9. CHECKING OF EGR SYSTEM <4G92 engine>

- Disconnect the vacuum hose (green strip) from the carburetor, and connect a hand vacuum pump to the vacuum hose.
- (2) Plug the nipple from which the vacuum hose was disconnected.
- (3) When the engine is cold and hot, apply a vacuum while the engine is idling, and check the condition of the engine and the vacuum.

When engine is cold [Engine coolant temperature: 40°C (104°F) or less]

	Engine status	Normal condition
Vacuum is applied	No change	Vacuum leaks

When engine is cold [Engine coolant temperature: 80°C (176°F) or less]

	Engine status	Normal condition
Apply vacuum of 40 mm Hg (1.57 in.Hg)	No change	Vacuum is maintained
Apply vacuum of 120 mm Hg (4.72 in.Hg)	Idling becomes slightly unstable	

17-35-11 EMISSION CONTROL – Service Adjustment Procedures (4G92, 4G63 engine)

10. CHECKING OF EGR SYSTEM <4G63 engine>

Refer to P.17-33.

11. CHECKING OF EGR VALVE

- Remove the EGR valve and inspect for sticking, carbon deposites, etc. If found, clean with a suitable solvent so that the valve seats correctly.
- (2) Connect a hand vacuum pump to the EGR valve.
- (3) Apply a vacuum of 500 mmHg (19.7 in.Hg) and make sure that airtightness is maintained. Check whether or not air is blown out of the EGR air pas-

<4G92 engine>

sage.

Vacuum	Normal condition
40 mmHg (1.57 in.Hg) or less	Air is not blown out
120 mmHg (4.72 in.Hg) or more	Air is blown out

<4G63 engine>

Vacuum	Normal condition	
50 mmHg (1.97 in.Hg) or less	Air is not blown out	
220 mmHg (8.66 in.Hg) or more	Air is blown out	

Caution

When mounting the EGR valve, use a new gasket and tighten to a torque of 17–26 Nm (1.7–2.6 kgm, 12–19 ft.lbs.)

12. CHECKING OF VACUUM REGULATOR VALVE

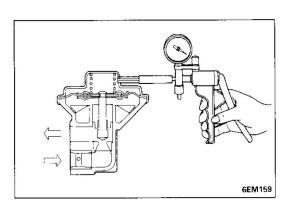
Refer to P.17-34.

13. CHECKING OF EGR VALVE CONTROL VACUUM

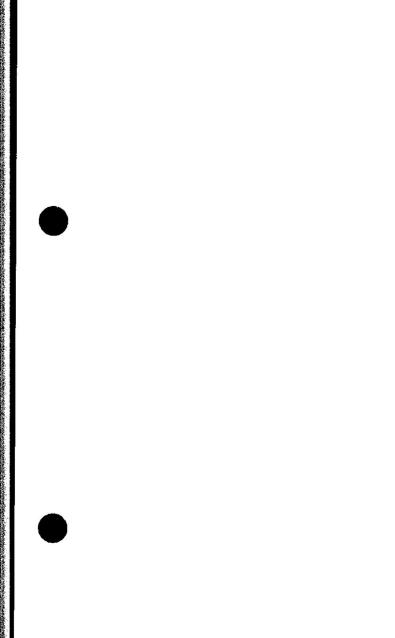
Refer to GROUP 13 FUEL – Service Adjustment Procedures (FBC).

14. CHECKING OF VRV CONTROL VACUUM

Refer to GROUP 13 FUEL – Service Adjustment Procedures (FBC).


15. CHECKING OF THERMO VALVE <4G92 engine> Refer to P.17-22-8.

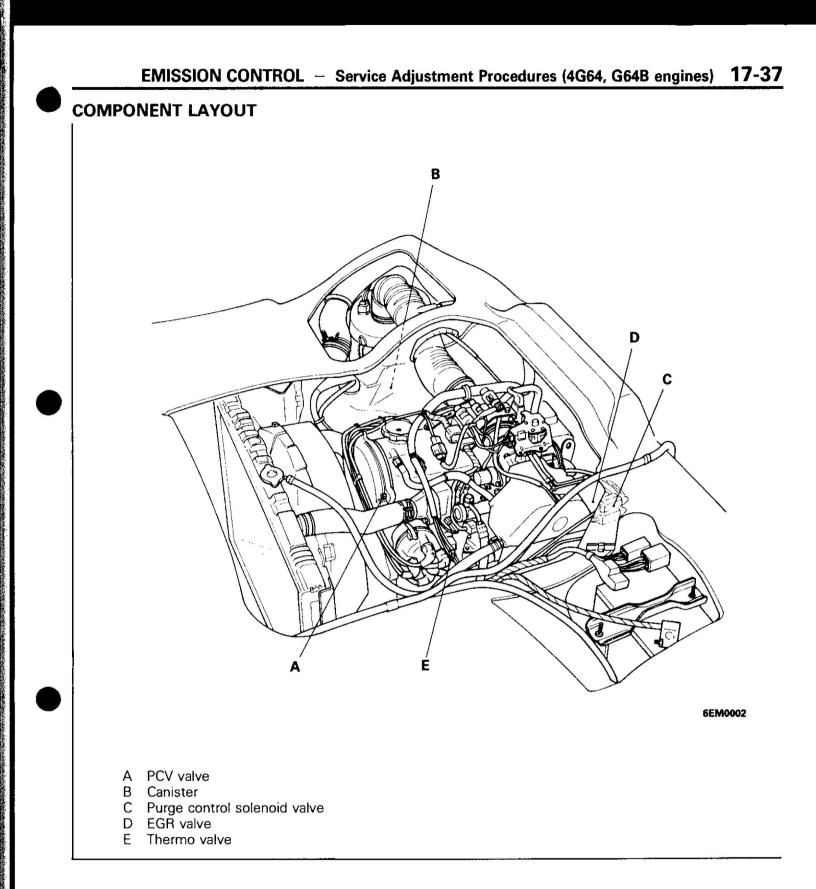
16. CHECKING OF THERMO VALVE <4G64 engine>


Refer to the Purge Control System item.

17. CHECKING OF INTAKE AIR TEMPERATURE CONTROL DEVICES

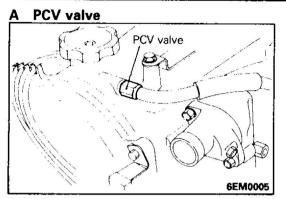
Refer to P.17-22-10.

NOTES

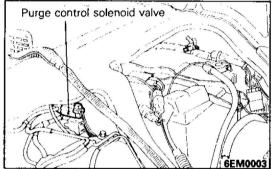

SERVICE ADJUSTMENT PROCEDURES (4G64, G64B engines) – Vehicles built up to May 1994

EMISSION CONTROL DEVICE REFERENCE TABLE

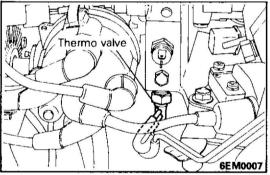
Reference page for each part inspection Engine (Group 11) Fuel (Group 13) Fuel (Group 13) 17-49 17-48 17-45 17-47 17-43 Exhaust gas recirculation (EGR) system Х Х Х Three catalyst converter Х Air fuel ratio control system Jet air system \times watsys X Х X X Evaporative emission contro waisys Х Crankcase emission control Emission control system Overfill limiter (2-way valve) MPI system component Three catalyst converter Purge control valve Thermo valve Related parts EGR valve PCV valve Jet valve Canister

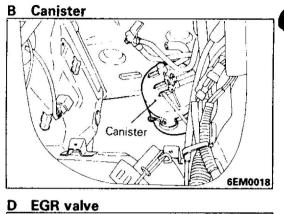

NOTE: This table is vehicles for Europe (with oxygen sensor, non-leaded gasoline).

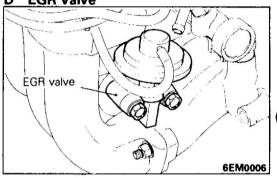
E17FE--2

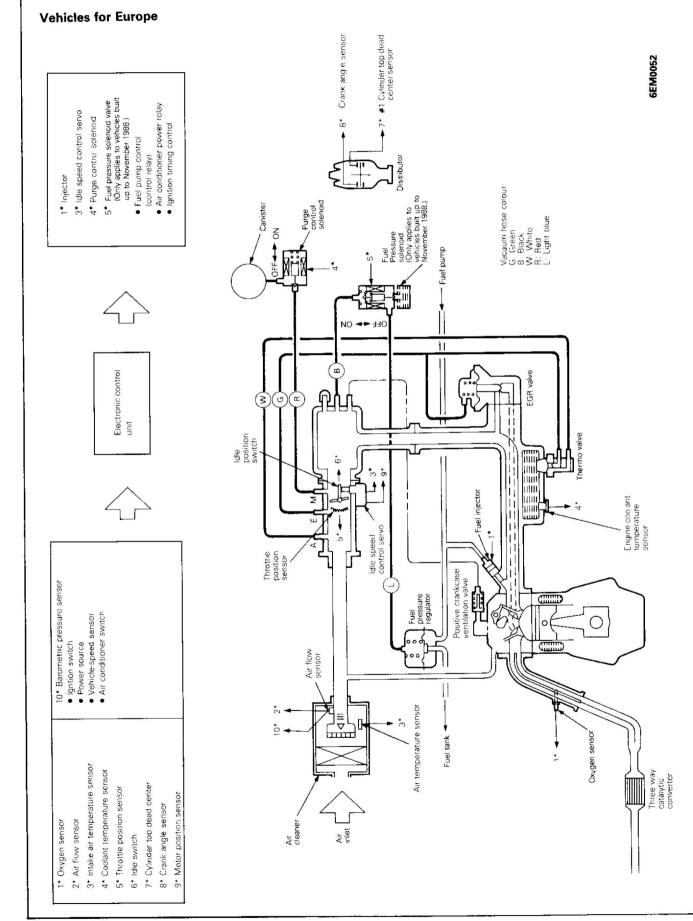


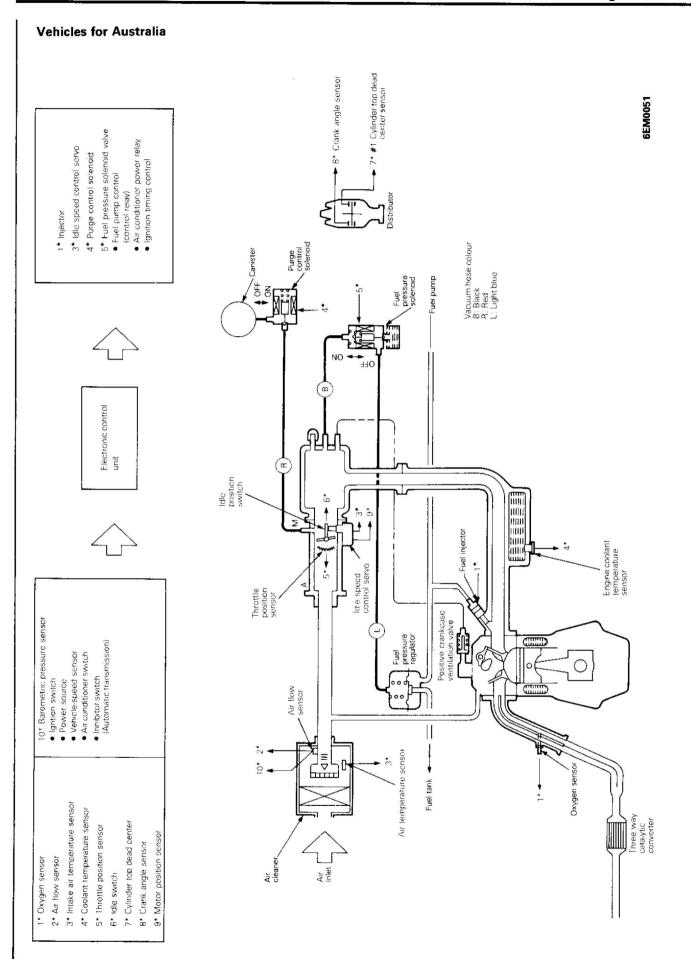
© Mitsubishi Motors Corporation NOV. 86

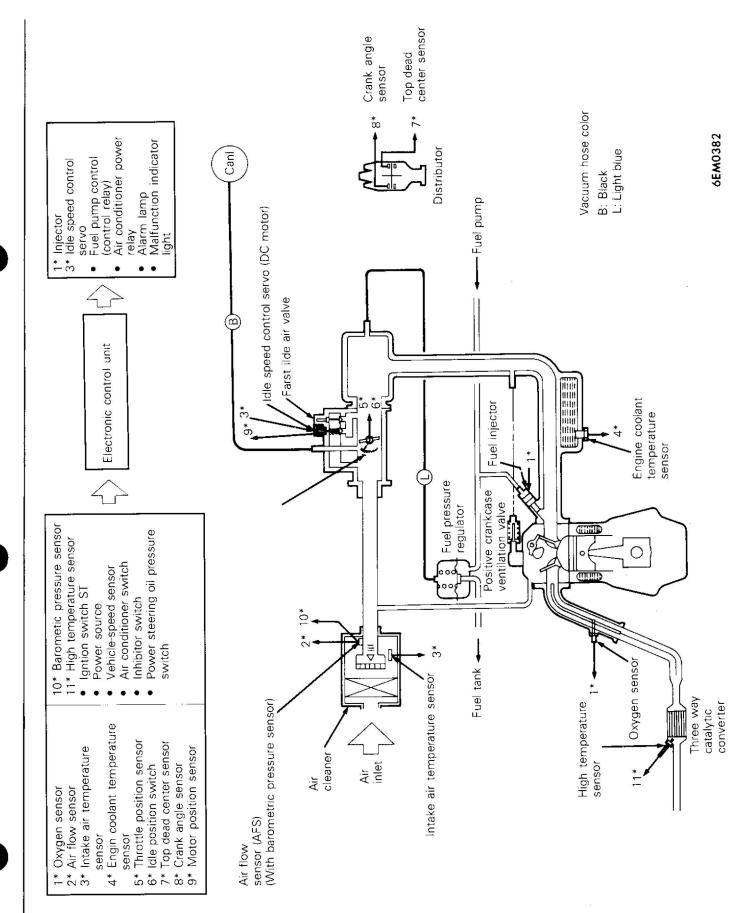

17-38 EMISSION CONTROL - Service Adjustment Procedures (4G64, G64B engines)

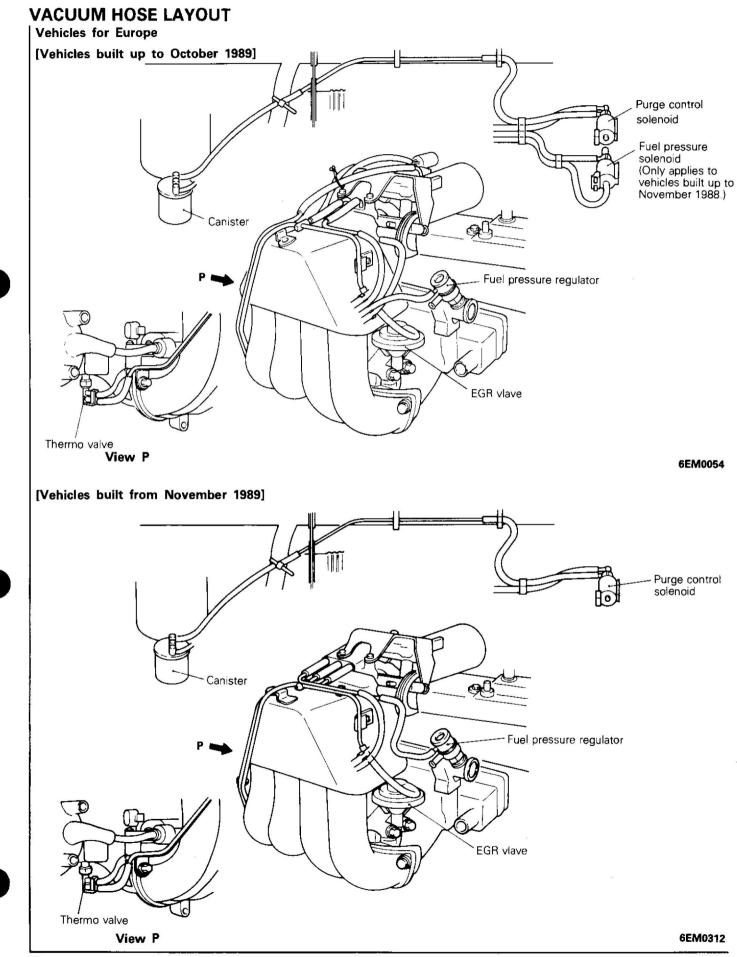


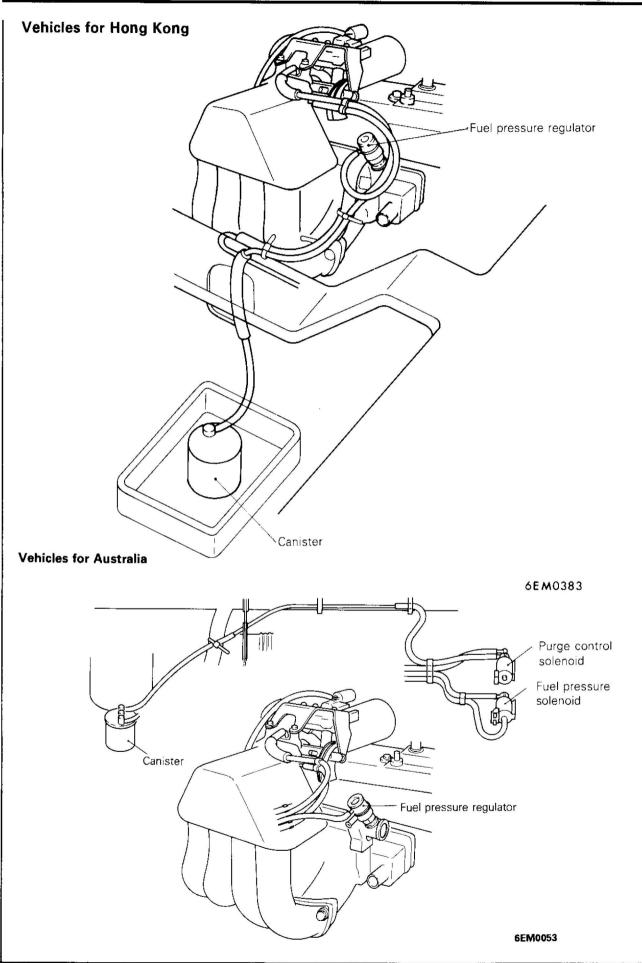

C Purge control solenoid valve


E Thermo valve




VACUUM HOSE PIPING DIAGRAM

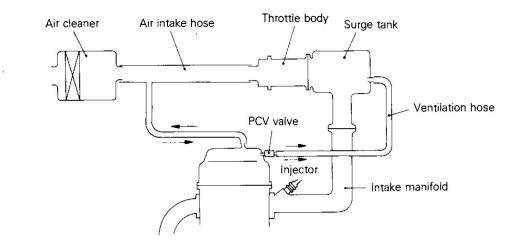

17-40 EMISSION CONTROL - Service Adjustment Procedures (4G64, G64B engines)


Vehicles for Hong Kong

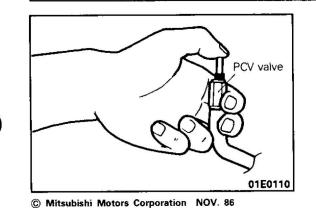
NOTE

17-42 EMISSION CONTROL - Service Adjustment Procedures (4G64, G64B engines)

CAUTIONS ON INSPECTION


E17FFAB

- Inspect the various devices only after completing engine adjustment.
- 2. Inspect the hoses to make sure there are no disconnections, connection errors or damage.
- 3. Make sure there is no hose, pipe or port clogging, or cracks or damage in the hoses and pipes.
- 4. When replacing device hoses, always mount the replacement hose in the same position (direction) as the original.
- 5. When finished, check the connections as described in the scrvice manual.


CRANKCASE EMISSION CONTROL SYSTEM

1. CHECKING OF POSITIVE CRANKCASE VENTILATION (PCV) VALVE

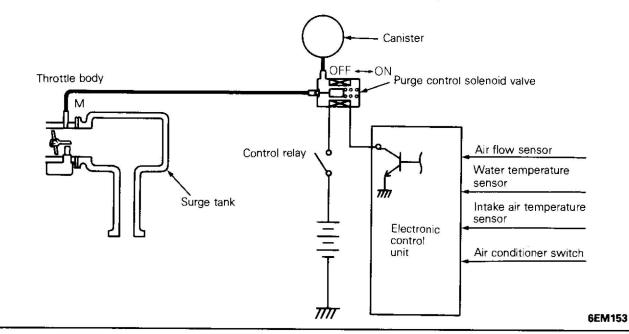
E17FAAB2

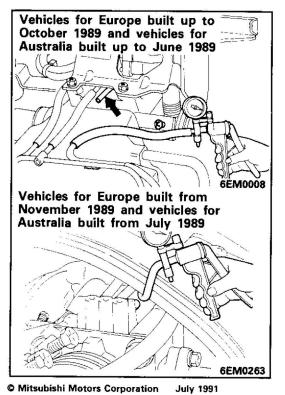
6EM120

- (1) After disconnecting the ventilation hose from the positive crankcase ventilation (PCV) valve, remove the PCV valve from the rocker cover and again connect the ventilation hose.
- (2) Run the engine at idling speed, place a finger over the end of the PCV valve opening and check the intake manifold vacuum.

NOTE

The plunger inside the PCV valve will move back and forth.


PWWE8608


17-44 EMISSION CONTROL – Service Adjustment Procedures (4G64, G64B engines)

(3) If vacuum cannot be felt against the finger, clean the PCV valve and ventilation hose with cleaning solvent, or else replace.

EVAPORATIVE EMISSION CONTROL SYSTEM

2. CHECKING OF PURGE CONTROL SYSTEM (Vehicles for Europe and Australia)

 Disconnect the vacuum hose (red stripes) from the throttle body and connect it to a hand vacuum pump.

E17FBAE

(2) Inspect the following items with the engine cold [coolant temperature: 60°C (140°F) or less] and hot [coolant temperature: 70°C (158°F) or higher].

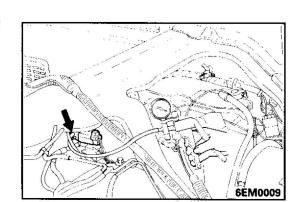
When engine is cold

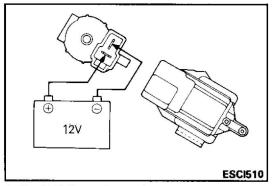
Vacuum	Engine status	Air conditioner switch	Normal condition
400 mmHg (15.7 in.Hg)	2,500 r/min.		Vacuum is maintained

When engine is hot

Vacuum	Engine status	Air condi- tioner switch	Normal condition
	1. d.	ON	Vacuum leaks
	Idling		Vacuum is main- tained
400 mmHg (15.7 in.Hg)	2,500 r/min.	OFF	Vacuum will leak for approximately 3 min- utes after the engine is started. After 3 minutes have elapsed, the vacuum will be maintained momentarily, after which it will again leak.

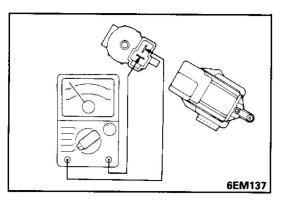
3. CHECKING OF PURGE CONTROL SOLENOID VALVE <Vehicles for Europe and Australia>

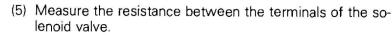

NOTE


When disconnecting the vacuum hose, always make a mark so that the hose can be reconnected at original position.

- (1) Disconnect the vacuum hose (black stripes, red stripes) from the solenoid valve.
- (2) Disconnect the harness connector.
- (3) Connect a hand vacuum pump to the nipple to which the vacuum hose with red stripes was connected.

(4) Check airtightness by applying a vacuum with voltage applied directly from the battery to the purge control solenoid valve and without applying voltage.


Battery voltage	Normal condition
Applied	Vacuum leaks
Not applied	Vacuum maintained



© Mitsubishi Motors Corporation July 1991

17-46 EMISSION CONTROL - Service Adjustment Procedures (4G64, G64B engines)

Standard value: 38-44Ω [at 20°C (68°F)]

4. CHECKING OF AIR FLOW SENSOR

Refer to GROUP 13 FUEL – Service Adjustment Procedures (MPI).

5. CHECKING OF COOLANT TEMPERATURE SENSOR

Refer to GROUP 13 FUEL – Service Adjustment Procedures (MPI).

6. CHECKING OF INTAKE AIR TEMPERATURE SENSOR

Refer to GROUP 13 FUEL – Service Adjustment Procedures (MPI).

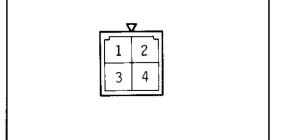
7. CHECKING OF AIR CONDITIONER SWITCH

Operate the switch, and check the continuity between the terminals.

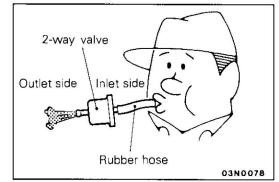
Terminal Switch position	1	2	3	Indica- tion lamp	4	Color
OFF			0		Ю	Amber
ON (pressed inward)	0	-0	0-		-0	Green

NOTE

O-O indicates that there is continuity between the terminals.

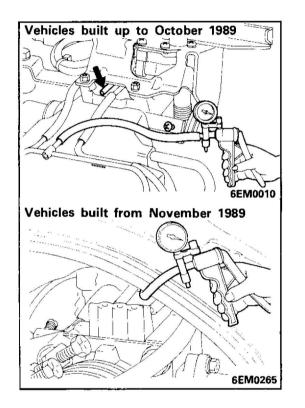

8. CHECKING OF 2-WAY VALVE

Attach a clean hose and check the operation of the 2-way valve


Inspection procedure	Normal condition
Lightly blow from inlet side (fuel tank side).	Air passes through with a slight feeling of resistance.
Lightly blow from outlet side (canister side).	Air passes through.

9. CHECKING OF CANISTER

Refer to GROUP 13 FUEL - Fuel Line.



20W768

EXHAUST EMISSION CONTROL SYSTEM

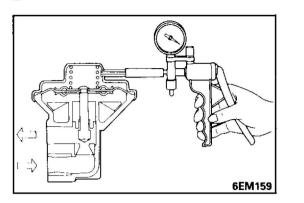
1. CHECKING OF AIR FUEL RATIO CONTROL SYSTEM Refer to GROUP 13-Service Adjustment Procedure (MPI).

- 2. CHECKING OF EXHAUST GAS RECIRCULATION (EGR) SYSTEM (Vehicles for Europe)
 - (1) Disconnect the vacuum hose (green stripes) from the throttle body and connect it to a hand vacuum pump.

(2) Inspect the following items with the engine cold [coolant temperature: 50°C (122°F) or less] and hot [coolant temperature: 80°C (176°F) or more].

When engine is cold

Vacuum	Engine status	Normal condition
Try applying vacuum	ldling	Vacuum leaks from the thermo valve


When engine is hot

Vacuum	Engine status	Normal condition
40 mmHg (1.57 in.Hg)	ldling	Vacuum is maintained
150 mmHg (5.91 in.Hg)	Idling → Some- what unstable	Vacuum is maintained

3. CHECKING OF EGR VALVE (Vehicles for Europe)

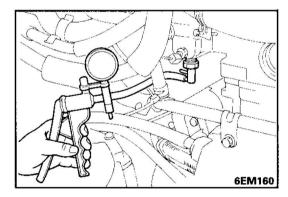
 Remove the EGR valve and inspect for sticking, carbon deposits, etc. If found, clean with a suitable solvent so that the valve seats correctly.

17-48 EMISSION CONTROL – Service Adjustment Procedures (4G64, G64B engines)

- (2) Connect a hand vacuum pump to the EGR valve.
- (3) Apply a vacuum of 500 mmHg (19.7 in.Hg) and make sure that airtightness is maintained.
- (4) Check whether or not air is blown out of the EGR air passage.

Vacuum	Nominal condition
40 mmHg (1.57 in.Hg) or less	Air is not blown out
150 mmHg (5.91 in.Hg) or more	Air is blown out

Caution


When mounting the EGR value, use a new gasket and tighten to a torque of 19-28 Nm (1.9-2.8 kgm, 14-20 ft.lbs.).

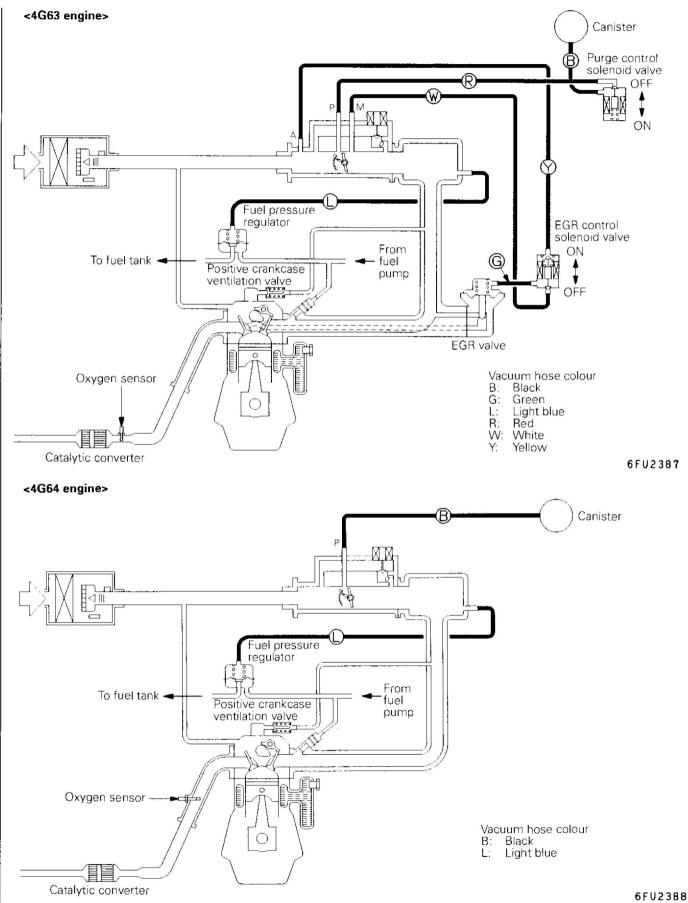
- 4. CHECKING OF THERMO VALVE (Vehicles for Europe) Caution
 - 1. Do not apply spanners, etc., to the plastic parts of the thermo valve.
 - 2. When installing, coat threads with a sealant (3M NUT Locking Part No. 4171 or equivalent) and tighten to a torque of 20-40 Nm (2-4 kgm, 15-29 ft.lbs.).
 - 3. When disconnecting the vacuum hose, always make a mark so that the hose can be reconnected at original position.
 - Disconnect the vacuum hose (white stripes, green stripes) and connect a hand vacuum pump to the thermo valve.
 - (2) Apply vacuum to check the thermo valve.

Engine coolant temperature	Normal condition
50°C (122°F) or less	Vacuum leaks
80°C (176°F) or more	Vacuum is maintained

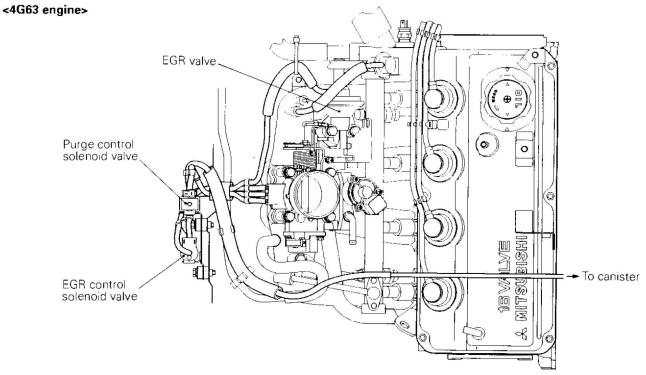
5. CHECKING OF EGR VALVE CONTROL VACUUM

Refer to GROUP 13-Service Adjustment Procedures (MPI).

SERVICE ADJUSTMENT PROCEDURES (4G63, 4G64 engines) – Vehicles with MPI built from June 1994

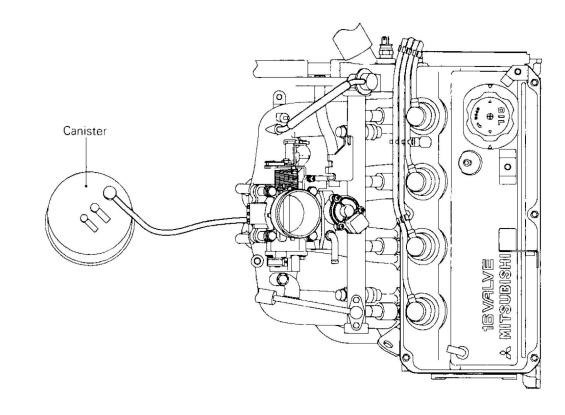

E17FE--2

EMISSION CONTROL DEVICE REFERENCE TABLE

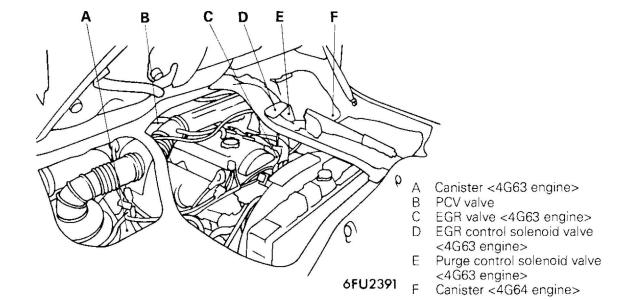

Emission control system Related parts	Crankcase emission control Evaporative emission control Evatem	Mir fuel ratio control system	Three catalyst converter	EGR) system*	Reference page for each part inspection
PCV valve	×				17-22-7
Purge control solenoid valve*	×				17-48-6
Canister	×				I
Overfill limiter (2-way valve)	×				Fuel (Group 13)
MPI system component	×	×			Fuel (Group 13)
Three catalyst converter		X-1	×		T
EGR valve*				×	17-48-9
EGR control solenoid valve*				×	17-48-9
NDTF					

NOTE * : Vehicles with 4G63 engine.

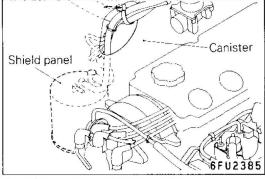
VACUUM HOSE PIPING DIAGRAM



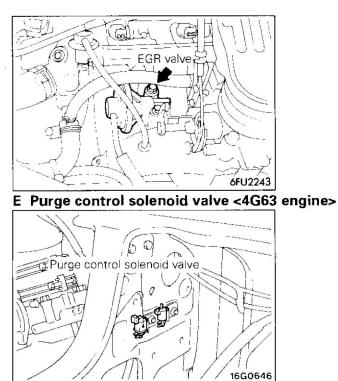
VACUUM HOSE LAYOUT

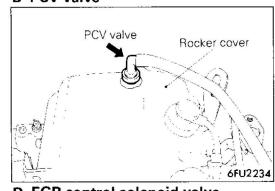


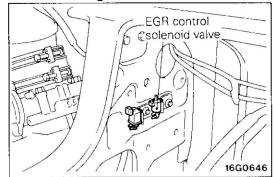
6FU2389

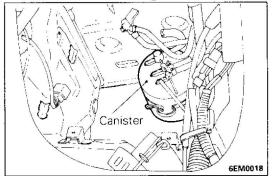


6FU2390


COMPONENT LAYOUT


A Canister <4G63 engine>

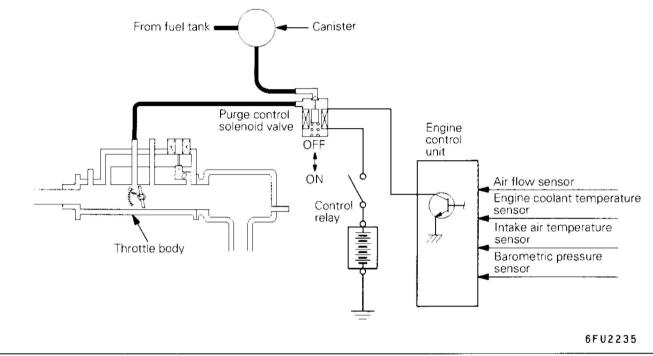

C EGR valve <4G63 engine>

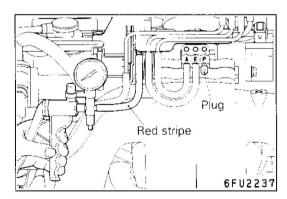

B PCV valve

D EGR control solenoid valve <4G63 engine>

F Canister <4G64 engine>

CAUTIONS ON INSPECTION


Refer to P.17-28.


CRANKCASE EMISSION CONTROL SYSTEM

Refer to P.17-22-7.

EVAPORATIVE EMISSION CONTROL SYSTEM

1. CHECKING OF PURGE CONTROL SYSTEM <4G63 engine>

- (1) Disconnect the vacuum hose (red stripe) from the throttle body, and connect it to a hand vacuum pump. um hose.
- (2) Plug the nipple from which the vacuum hose was disconnected.
- (3) When the engine is cold and hot, apply a vacuum while the engine is idling, and check the condition of the engine and the vacuum.

When engine is cold [Engine coolant temperature: 40°C (104°F) or less]

Vacuum	Engine status	Normal condition
400 mmHg (16 in.Hg)	3,000 r/min.	Vacuum is maintained

When engine is hot [Engine coolant temperature: 80°C (176°F) or higher]

Vacuum	Engine status	Normal condition
400 mmHg (16 in.Hg)	Idling	Vacuum is maintained
	3,000 r/min.	Vacuum will leak for approximately 3 minutes after the engine is started. After 3 minutes have elapsed, the vacuum will be maintained momentarily, after which it will again leak.*

NOTE

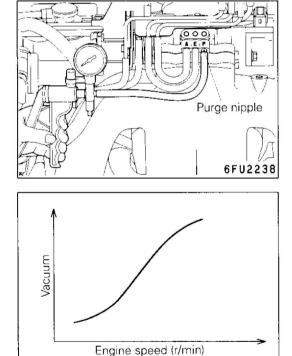
* The vacuum will leak continously if the atmospheric pressure is approximately 580 mmHg (23 in.Hg) or less, or the temperature of the intake air is approximately 50°C (122°F) or higher.

2. CHECKING OF PURGE CONTROL VACUUM <4G63 engine>

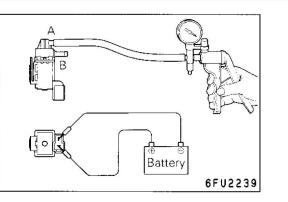
- (1) Disconnect the vacuum hose (red stripe) from the throttle body purge vacuum nipple and connect a hand vacuum pump to the nipple.
- (2) Start the engine and check to see that, after raising the engine speed by racing the engine, purge vacuum raises proportionately with the rise in engine speed.

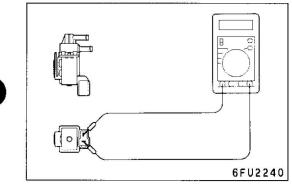
NOTE

If there is a problem with the change in vacuum, it is possible that the throttle body purge port may be clogged and require cleaning.


3. CHECKING OF PURGE CONTROL SOLENOID VALVE <4G63 engine>

NOTE


IFU446


When disconnecting the vaccum hose, always make a mark so that it can be reconnected at original position.

- (1) Disconnect the vacuum hose (black stripe, red stripe) from the solenoid valve.
- (2) Disconnect the harness connector.

EMISSION CONTROL – Service Adjustment Procedures (4G63, 4G64 engines) 17-48-7

- (3) Connect a hand vacuum pump to nipple (A) of the solenoid valve (refer to the illustration at left).
- (4) Check airtightness by applying a vacuum with voltage applied directly from the battery to the purge control solenoid valve and without applying voltage.

Battery voltage	Normal condition
Applied	Vacuum leaks
Not applied	Vacuum maintained

(5) Measure the resistance between the terminals of the solenoid valve.

Standard value: 36–44 Ω [at 20°C (68°F)]

- CHECKING OF AIR FLOW SENSOR <4G63 engine> Refer to GROUP 13 FUEL – Service Adjustment Procedures (MPI).
- 5. CHECKING OF COOLANT TEMPERATURE SENSOR <4G63 engine>

Refer to GROUP 13 FUEL – Service Adjustment Procedures (MPI).

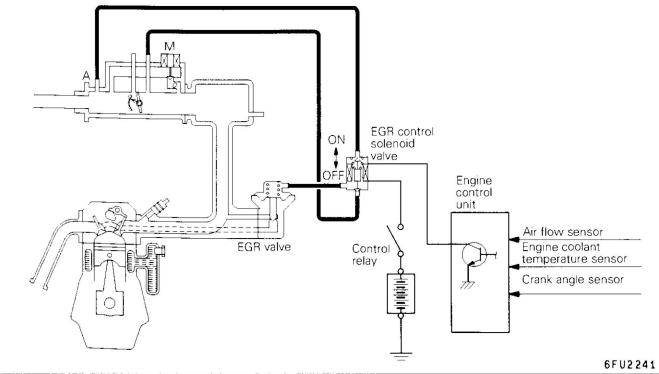
6. CHECKING OF INTAKE AIR TEMPERATURE SENSOR <4G63 engine>

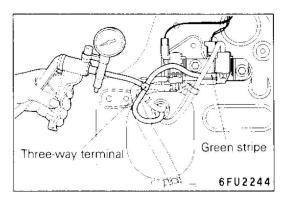
Refer to GROUP 13 FUEL – Service Adjustment Procedures (MPI).

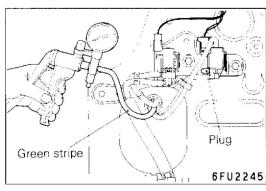
7. CHECKING OF 2-WAY VALVE

Refer to GROUP 13 FUEL - Fuel Tank.

8. CHECKING OF CANISTER


Refer to GROUP 13 FUEL - Fuel Line.


EXHAUST EMISSION CONTROL SYSTEM <4G63 engine>

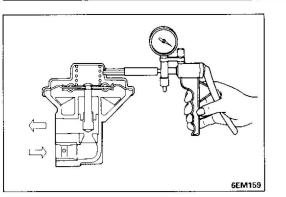

1. CHECKING OF AIR FUEL RATIO CONTROL SYSTEM

Refer to GROUP 13 - Service Adjustment Procedures (MPI).

2. CHECKING OF EXHAUST GAS RECIRCULATION (EGR) SYSTEM <4G63 engine>

- (1) Disconnect the vacuum hose (green stripe) from the EGR control solenoid valve, and then connect a hand vacuum pump via the three-way terminal.
- (2) Regarding the engine in cold and hot conditions, check the condition of vacuum when a rapid racing has been performed by opening the throttle valve quickly.

When engine is cold [Engine coolant temperature: 20°C (68°F) or less]


Throttle valve	Normal vacuum condition
Open quickly	No vacuum will generate (remained as barometric pressure).

When engine is hot [Engine coolant temperature: 80°C (176°F) or higher]

Throttle valve	Normal vacuum condition
Open quickly	It will momentarily rise over 100 mmHg (3.9 in.Hg)

- (3) Disconnect the three-way terminal.
- (4) Connect the hand vacuum pump to the vacuum hose (green stripe).
- (5) Check whether the engine stalls or the idling is unstable when a vacuum of 200 mmHg (27 in.Hg) or higher is applied during idling.

EMISSION CONTROL – Service Adjustment Procedures (4G63, 4G64 engines) 17-48-9

3. CHECKING OF EGR VALVE <4G63 engine>

- Remove the EGR valve and inspect for sticking, carbon deposites, etc. If found, clean with a suitable solvent so that the valve seats correctly.
- (2) Connect a hand vacuum pump to the EGR valve.
- (3) Apply a vacuum of 500 mmHg (19.7 in.Hg) and make sure that airtightness is maintained. Check whether or not air is blown out of the EGR air pas-

sage.

Vacuum	Normal condition
40 mmHg (1.57 in.Hg) or less	 Air is not blown out
200 mmHg (7.87 in.Hg) or more	Air is blown out

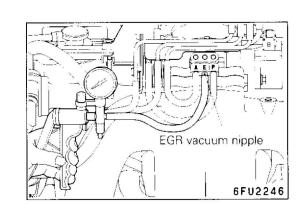
Caution

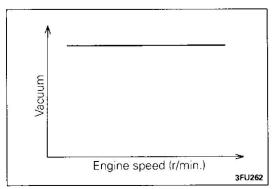
When mounting the EGR valve, use a new gasket and tighten to a torque of 17-26 Nm (1.7-2.6 kgm, 12-19 ft.lbs.)

- 4. CHECKING OF EGR CONTROL VACUUM <4G63 engine>
 - (1) Disconnect the vacuum hose (white stripe) from the throttle body EGR vacuum nipple and connect a hand vacuum pump to the nipple.

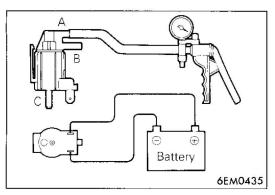
(2) Start the engine and check to see that, after raising the engine speed by racing the engine, vacuum remains fairly constant.

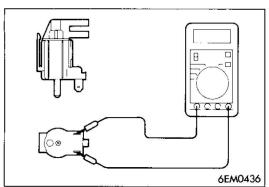
NOTE


If there is no vacuum created, it is possible that the throttle body EGR port may be clogged and require cleaning.


5. CHECKING OF EGR CONTROL SOLENOID VALVE <4G63 engine>

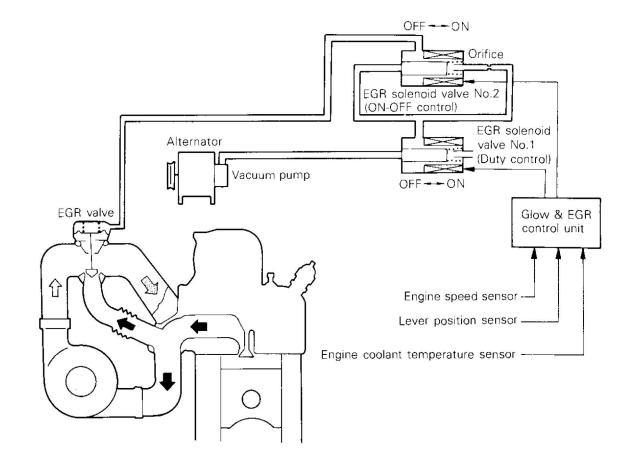
NOTE

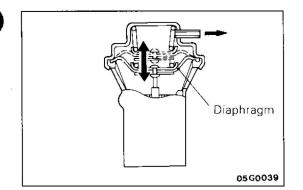

When disconnecting the vacuum hose, always make a mark so that it can be reconnected at original position.


- (1) Disconnect the vacuum hose (yellow stripe, white stripe, green stripe) from the solenoid valve.
- (2) Disconnect the harness connector.

17-48-10 EMISSION CONTROL – Service Adjustment Procedures (4G63, 4G64 engines)

- (3) Connect a hand vacuum pump to the nipple to which the white-striped vacuum hose was connected.
- (4) Check airtightness by applying a vacuum with voltage applied directly from the battery to the EGR control solenoid valve and without applying voltage.


Battery voltage	B nipple condition	Normal condition
Not applied	Open	Vacuum maintained
Applied	Open	Vacuum leaks
	Closed	Vacuum maintained

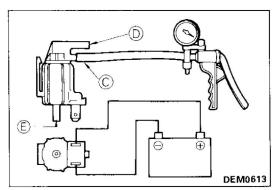

(5) Measure the resistance between the terminals of the solenoid valve.

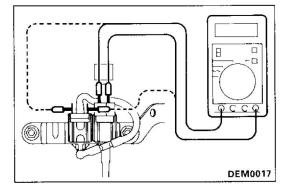
Standard value: 36–44Ω [at 20°C (68°F)]

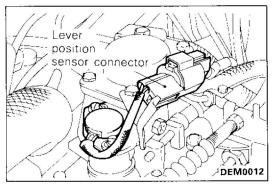
SERVICE ADJUSTMENT PROCEDURES (4D56 engine)

EXHAUST GAS RECIRCULATION (EGR) SYSTEM – VEHICLES WITH TURBOCHARGER FOR SWITZERLAND BUILT FROM NOVEMBER, 1990

FUNCTION INSPECTION


- (1) Start the engine and let it warm up until the engine coolant temperature is 65°C (149°F) or above.
- (2) When the engine is raced by suddenly depressing the accelerator pedal, check to be sure that the diaphragm of the EGR valve lifts.


EGR SOLENOID VALVE NO.1/NO.2 OPERATION INSPECTION


- (1) Remove the EGR solenoid valve No.1/No.2 connectors and vacuum hoses.
- (2) Attach a vacuum pump to each nipple of the EGR solenoid valve No.1/No.2 and apply a vacuum. Check that the valves are airtight both when voltage is applied to each terminal of the EGR solenoid valves and when it is not applied.

17-48-12 EMISSION CONTROL – Service Adjustment Procedures (4D56 engine)

EGR SOLENOID VALVE No. 1

Battery voltage	Normal condition
When current is flowing	Vacuum leaks (Vacuum is maintained when nipple®is covered)
When current is not flowing	Vacuum is maintained

EGR SOLENOID VALVE No. 2

Battery voltage	Normal condition	
When current is flowing	Vacuum leaks (Vacuum is maintained when nipple D is covered)	
When current is not flowing	Vacuum leaks (Vacuum is maintained when nipple 'E' is covered)	

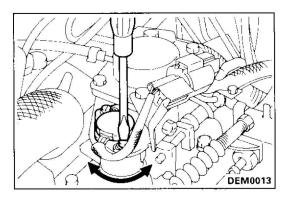
EGR SOLENOID VALVE NO.1/NO.2 RESISTANCE INSPECTION

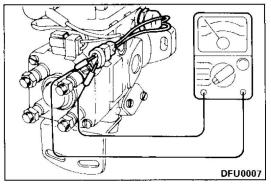
Measure the coil resistance of the EGR No. 1 and No. 2 solenoid valves with a circuit tester.

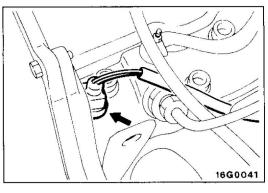
Standard value [At 20°C (68°F)]: 36-44 Ω

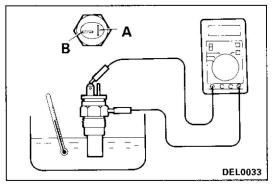
LEVER POSITION SENSOR (LPS) INSPECTION

- (1) Loosen the accelerator cable tension sufficiently.
- (2) Connect the special tool (MD998478) to the lever position sensor connector as shown in the illustration.
- (3) Connect a digital-type voltmeter between the red clip (output) and blue clip (earth) of the connected special tool.


(4) Turn the ignition switch to ON. (Do not start the engine.)


(5) Measure the output voltage of the lever position sensor.


Standard value:


Lever condition	Voltage V
Idle position	0.3 - 1.5
Fully open	3.7 - 4.9

EMISSION CONTROL – Service Adjustment Procedures (4D56 engine) 17-48-13

(6) If the voltage is outside the standard value, adjust by loosening the LPS mounting screw and turning the LPS body. After adjusting, securely tighten the screw. NOTE

The output voltage will increase if the LPS body is turned in an anti-clockwise direction.

- (7) Turn the ignition switch to "OFF".
- (8) Adjust the accelerator cable play.

ENGINE SPEED SENSOR INSPECTION

- (1) Disconnect the engine speed sensor connectors.
- (2) Measure the resistance between the engine speed sensor terminals.

Standard value: 1.3 - 1.9 kΩ

ENGINE COOLANT TEMPERATURE SENSOR INSPECTION

(1) Remove the engine coolant temperature sensor.

(2) While the sensor section of the engine coolant temperature sensor is submerged, measure the resistance between (B) terminal and the body.

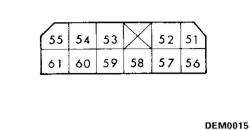
Temperature [°C (°F)]	Resistance value (k Ω)
-20 (-4)	24.8±2.5
0 (32)	8.6
20 (68)	3.25±0.33
40 (104)	1.5
80 (176)	0.3

(3) After applying specified sealant to the thread, tighten to the specified torque.

Specified sealant: 3M Nut Locking Part No. 4171 or equivalent Tightening torque: 30 Nm (3 kgm, 22 ft.lbs.)

GLOW & EGR CONTROL UNIT – VEHICLES WITH TURBOCHARGER FOR SWITZERLAND BUILT FROM NOVEMBER, 1990 6 13 5 12 11 4 Glow control 10 connector 3 9 2 8 1 7 55 61 54 60 EGR control 53 59 connector 58 52 57 51 56 DEM0018

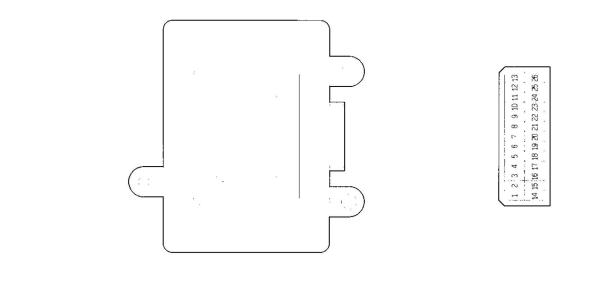
Terminal voltage measurement


NOTE

- (1) Inspect with the glow & EGR control unit connectors connected.
- (2) When measuring the voltage, the earth will be the glow & EGR unit terminal no. 10.

Terminal Voltage Reference Table

Glow & EGR control unit inspection terminal	Inspection item		nspection conditions	Standard value
		Ignition switc	h: OFF \rightarrow ON	11 – 13V
52	EGR solenoid valve No.1	While engine suddenly race	is idling after having warmed up, the engine.	Momentarily increases
		Ignition	Throttle lever idle position	0.3 – 1.5V
53	Lever position sensor	switch: OFF \rightarrow ON	Throttle lever fully open position	3.7 – 4.9
55	Sensor power supply <m only="" t=""></m>	Ignition swite	h: OFF \rightarrow ON	4.5 – 5.5V
	i	Ignition swite	11 – 13V	
58	EGR solenoid valve No.2	While engine suddenly race	is idling after having warmed up, a the engine.	Momentarily decreases


Glow & EGR control unit harness-side connector (11P) seen from the terminal side

Harness continuity inspection

- (1) Disconnect the glow & EGR control unit connector.
- (2) Check to be sure that there is continuity $(1.3 1.9 \text{ k}\Omega)$ between harness-side connector terminals 60 61.

GLOW & EGR CONTROL UNIT – Vehicles built from July 1993

DEM0025

TERMINAL VOLTAGE MEASUREMENT

NOTE

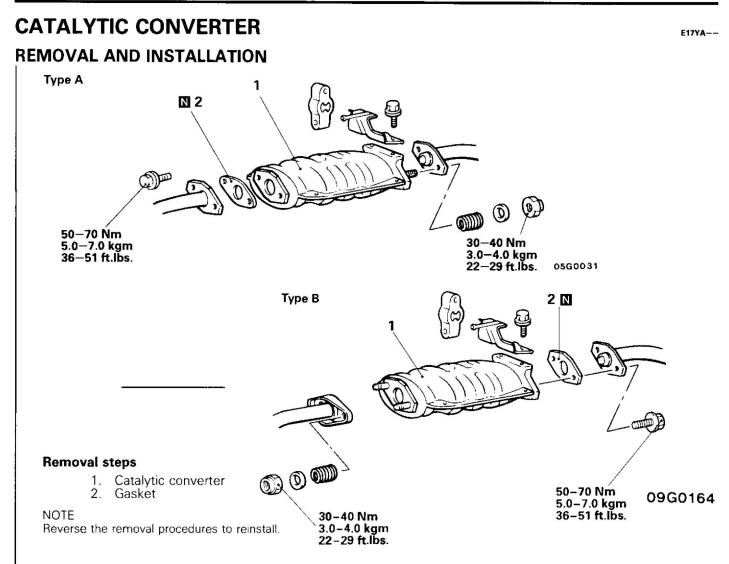
- (1) Inspect with the glow & EGR control unit connectors still connected.
- (2) When measuring the voltage, the earth will be the glow & EGR unit terminal No. 26.

Terminal Voltage Reference Table

Glow & EGR control unit inspection terminal	Inspection item		Inspection conditions	Standard value
		Ignition switc	h: OFF ON	11-13V
3	EGR solenoid valve No. 1	While engine suddenly race	is idling after having warmed up, a the engine.	Momentarily increases
6	6 Lever position sensor	Ignition	Throttle lever idle position	0.3-1.5V
0	Lever position sensor	switch: OFF → ON	Throttle lever fully open position	3.7-4.9V
7	Sensor power supply	Ignition switc	h: OFF ON	4.5-5.5V
	· · · · · · · · · · · · · · · · · · ·	Ignition switc	11-13V	
16	EGR solenoid valve No.2	While engine suddenly race	is idling after having warmed up, the engine.	Momentarily decreases

HARNESS CONTINUITY INSPECTION

- (1) Disconnect the glow & EGR control unit connector.
- (2) Check to be sure that there is continuity $(1.3-1.9 \text{ k}\Omega)$ between the harness-side connector terminals 11-12.


13	12	11	10	9	8	7	6	5	4	3	2
26	25	24	23	22	21	20	19	18	17	16	15

DEM0026

© Mitsubishi Motors Corporation Jun. 1994

17-48-16 EMISSION CONTROL – Service Adjustment Procedures (4D56 engine)

NOTES

CHECKING OF CATALYTIC CONVERTER

E17YCAA

Inspect for damage, cracking or deterioration. Replace if faulty.

Caution

- Operation of any type, including idling, should be avoided if engine misfiring occurs. Under this condition the exhaust system will operare at abnormally high temperature, which may cause damage to the catalyst or underbody parts of the vehicle.
- Alteration or deterioration of ignition or fuel system, or any type of operating condition which results in engine misfiring must be corrected to avoid overhearing the catalytic converters.
- 3. Proper maintenance and tune up according to manufacturer's specifications should be made to correct the conditions as soon as possible.

NOTES